

Welcome to Blockchain Learning Group’s DApp Fundamentals Course!

An immersive, hands on bootcamp in Blockchain technology, with a focus on decentralized application (DApp) development. From the basics of Blockchain technology to cutting edge smart contract development patterns and deployment techniques. Additionally, a deep dive into utilizing the Ethereum platform to build powerful and impactful applications.

	Participants leave with a strong working knowledge foundation of full DApp development.

Note

For further information please navigate to The Blockchain Learning Group [https://www.blockchainlearninggroup.com/]

Contents

	Course Prerequisites
	1.0 Course Resources

	2.0 Machine Specs

	3.0 Virtual Machine Setup

	Blockchain Fundamentals
	1. ethstats.net

	2. etherscan.io

	3. ethernodes.org

	4. Hash Function

	5. Mining Script

	6. Bitcoin 51% Attack Cost

	7. Remix

	8. DappDeveloper.sol

	9. Exceed Block Gas Limit

	10. Voting Exercise

	11. Token Exercise

	Bonus

	Introduction to DApp Development
	Stage 1: Dev Enviroment Setup and Application Bootstrap

	Stage 2: Testing Your Token

	Stage 3: Token Deployment

	Stage 4: Token Interface

	Stage 5: Load Available On-chain Accounts

	Stage 6: Token Interaction - GET

	Stage 7: Load Account Balances

	Stage 8: Purchasing Tokens

	Stage 9: Events

	Stage 10: Transfer Tokens

	Bonus: Extend Your Wallet

	Clean up

	BONUS

	Solutions

	DeXchange Project
	Stage 1: Restart Your Dev Environment and App

	Stage 2: Create the Exchange Contract

	Stage 3: Write the submitOrder Method

	Stage 4: Test the submitOrder Method

	Stage 5: Write the executeOrder method

	Stage 6: Test the executeOrder method

	Stage 7: Deploy the Exchange

	Stage 8: Add Basic Routing to the DApp

	Stage 9: Create the Reference Exchange Object

	Stage 10: Create the UI Component to Submit an Order

	Stage 11: Create the Functionality to Submit an Order

	Stage 12: Listen for Submitted Order Events

	Stage 13: Create the Order Book Table

	Stage 14: Add an Order to the Order Book When Submitted

	Stage 15: Select and execute an Order

	Stage 16: Listen for executed order events

	Stage 17: Load the Order Book

	Bonus: Extend Your Exchange

	Clean up

	Solutions

	Solidity Exercises
	1. Voting Exercise

	2. Token Exercise

	Solutions

	Project Submission
	1.0 Github Account

	2.0 Submit Your Project

Course Prerequisites

1.0 Course Resources

Note

Familiarity beforehand recommended.

	JavaScript Basics [https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/JavaScript_basics]

	Object Destructuring [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Object_destructuring]

	Arrow Functions [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions]

	The Command Line [https://www.davidbaumgold.com/tutorials/command-line/]

	ReactJS [https://reactjs.org/tutorial/tutorial.html]

Note

Familiarity beforehand nice to have.

	Truffle Framework [http://truffleframework.com/]

	Material UI [http://www.material-ui.com/]

2.0 Machine Specs

Attention

Participants are required to bring their own laptops.

	4GB of memory and some disk space(4GB+) recommended.

	Operating System: Mac preferred, Ubuntu 16.04+ and Windows 7+ OK.

3.0 Virtual Machine Setup

A customized virtual machine has been provided for all students that is fully configured.

Important

Virtualization must be enabled! If not by default, this will need to be updated in the computer’s BIOS.

Note

View tutorial video [1-2] here [https://drive.google.com/open?id=1vtPL7J3hlZxzuBm5pb6q3efNo2QO7vFX]

1. Please download the virtual machine(vm) by clicking here [https://drive.google.com/uc?export=download&confirm=zQaE&id=1A9vHmnyhlyk26vQVMqlCCmCJj6tQrNn9]

	The download will begin immediately.

	This vm runs the operating system Ubuntu 16.04

2. Install VirtualBox-5.2 for your respective operating system, select the correct package for Mac, Windows and Linux distributins below

	Mac users may download directly from here [https://download.virtualbox.org/virtualbox/5.2.18/VirtualBox-5.2.18-124319-OSX.dmg]

	Windows users may download directly from here [https://download.virtualbox.org/virtualbox/5.2.18/VirtualBox-5.2.18-124319-Win.exe]

	Linux users will need to find the correct package for their distribution here [https://www.virtualbox.org/wiki/Linux_Downloads]

Note

View tutorial video [3-5] here [https://drive.google.com/open?id=1OS__-eel732JHGTRH6RUODKrHYQD6gUx]

3. Once downloaded double-click on the package to open it and follow the simple steps to complete the installation

4. Once installed open VirtualBox

	For Mac users VirtualBox will be located within the Applications folder and may be opened by clicking on the icon

	Otherwise you may search for VirtualBox on linux or Windows machines to locate the installed application

5. Import the downloaded vm

	Within the VirtualBox application click on File in the top left corner

	In the dropdown menu click “Import Appliance…”, this will open a dialog window

	In the dialog window, click the file icon beside the bottom text field to search for the location the vm was downloaded to, it will be named blg-vm-stable.ova by default, click on the vm to select it

	Click the Import button in the bottom bar, this will take a few minutes

	Once completed a new VM will be present within VirtualBox that is currently stopped

Note

View tutorial video [6-7] here [https://drive.google.com/open?id=1yAq4T3smp91JpzwIvSCkGfDGEha1mjdo]

6. Start the vm!

	Click on the new vm and then click the Start button

	In the dropdown click Normal Start

	This will take a few minutes, your vm is starting!

	Note if the VM fails to start it is most likely due to virtualization not being enabled on your machine, this will need to be accomplished in the BIOS of your machine.

7. Finally you will have a brand new Ubuntu 16.04 virtual machine up and running with all the required dependecies

Well done, you are all set!

8. Stop the vm

	Prior to the beginning of the course you may wish to stop the vm

	Within VirtualBox right-click on the vm that is running

	In the dropdown menu click “Stop”, this will stop your vm which you can easily start back up when the course begins

Note

Note if the keyring dialog pops up and the password is asked for simply click the cancel button, it may ask several times…

Blockchain Fundamentals

1. ethstats.net [https://ethstats.net/]

2. etherscan.io [https://etherscan.io/]

3. ethernodes.org [https://www.ethernodes.org/network/1]

4. Hash Function

	Run and attach into the container

$ docker run -dit --name=blg-env blockchainlg/dapp-dev-env
$ docker exec -it blg-env bash
python3
>>> from sha3 import keccak_256
>>> keccak_256(bytes(1)).hexdigest()
bc36789e7a1e281436464229828f817d6612f7b477d66591ff96a9e064bcc98a

>>> keccak_256(bytes(2)).hexdigest()
54a8c0ab653c15bfb48b47fd011ba2b9617af01cb45cab344acd57c924d56798

5. Mining Script [https://github.com/Blockchain-Learning-Group/docker/blob/master/dapp-dev-env/proof_of_work_mining.py]

	From within the docker container

cd /blg
blg# python3 proof_of_work_mining.py 1
blg# python3 proof_of_work_mining.py 10
blg# python3 proof_of_work_mining.py 1000
blg# python3 proof_of_work_mining.py 100000

Note

Mainnet difficulty as of block 6035113 was 3,550,379,886,051,685 seen here [https://etherscan.io/block/6035113]

6. Bitcoin 51% Attack Cost [https://gobitcoin.io/tools/cost-51-attack/]

7. Remix [https://remix.ethereum.org/#optimize=false&version=soljson-v0.4.24+commit.e67f0147.js]

8. DappDeveloper.sol [https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/exercises/DappDeveloper.sol]

9. Exceed Block Gas Limit

Add the below to DappDeveloper.sol

uint256 value_;

function reachGasLimit() {
 for (uint256 i = 0; i < 10**18; i++) {
 value_ = i;
 value_ = i + 1;
 value_ = i + 2;
 }
}

10. Voting Exercise [https://blg-dapp-fundamentals.readthedocs.io/en/latest/course-content/exercises.html#id1]

11. Token Exercise [https://blg-dapp-fundamentals.readthedocs.io/en/latest/course-content/exercises.html#id2]

Bonus

1. Deploy your token to a public Test Net(Kovan, Rinkeby, Ropsten)!

	Ensure Metamask is installed, enabled and unlocked

	Ensure Metamask is connected to Kovan via the drop down in the top left corner

	Within remix under the run tab switch from Javascript VM to injected web3

	Refresh the browser

	Now re-deploy and the contract will be sent from your Metamask account.

Note

	A Metamask window will pop-up for you to confirm the transaction

	Also SAVE the address the token was deployed at! You may need it later :)

2. Sync an Ethereum node of your own

Note

Look to setup a node locally or via Azure. Azure is a nice option to begin with as a node locally can be quite heavy and resource intensive.

	Getting Started With Azure [https://azure.microsoft.com/en-us/get-started/?v=17.39]

	Sync a Parity node to Kovan

	Instructions to deploy to Azure here [https://medium.com/@attores/creating-a-free-kovan-testnet-node-on-azure-step-by-step-guide-8f10127985e4]

	Parity Homepage [https://www.parity.io/]

	Sync a Geth node to Rinkeby

	Instructions here [https://gist.github.com/cryptogoth/10a98e8078cfd69f7ca892ddbdcf26bc]

	Geth Homepage [https://github.com/ethereum/go-ethereum]

Introduction to DApp Development

View Completed Wallet Demo [https://drive.google.com/open?id=1edaSVgMd-PbRYhXiWQlZV_K2ICiIVobJ]

Stage 1: Dev Enviroment Setup and Application Bootstrap

Note

Begin instructions in a fresh terminal instance. Not within any existing window manager, ie. screen or tmux.

Video Tutorial [https://drive.google.com/open?id=1IvYodLeMF929k9hJg7M08_864Qxukecd]

Important

	Replace <USERNAME> in ALL instructions below with your username. This is your machine’s active user and can likely be found here:

	
	Linux: adam@ubuntu-box:~$, <USERNAME> == adam

	Mac: mac-box:~ adam1$, <USERNAME> == adam1

	windows: c:\users\adam2>, <USERNAME> == adam2

	docker-machine: adam3@DESKTOP-109 MINGW64, <USERNAME> == adam3

1. Make a blg directory on your desktop

Important

This can be done by simply right-clicking on your desktop and creating a new folder named blg.

If you wish to do so from the command line the commands are as follows:

Linux, Mac and Docker Machine

cd ~/Desktop && mkdir blg

Windows

cd c:\Users\<USERNAME>\desktop && MD blg

	Example output:

adam@adam:/$ cd ~/Desktop && mkdir blg
adam@adam:~/Desktop$

	Now change into this directory from the command line

Linux, Mac and Docker Machine

cd ~/Desktop/blg

Windows

cd c:\Users\<USERNAME>\desktop\blg

2. Clone the wallet template

Important

Make SURE you are within the blg directory before cloning the repo!

git clone https://github.com/Blockchain-Learning-Group/wallet-template.git
cd wallet-template
git checkout tags/2.0

	Example output:

adam@adam:~/Desktop/blg$ git clone https://github.com/Blockchain-Learning-Group/wallet-template.git
Cloning into 'wallet-template'...
[..]
Unpacking objects: 100% (30/30), done.
Checking connectivity... done.

adam@adam:~/Desktop/blg$ cd wallet-template

adam@adam:~/Desktop/blg/wallet-template$ git checkout tags/2.0
Note: checking out 'tags/2.0'.
[...]
HEAD is now at 16aa5a3...
adam@adam:~/Desktop/blg/wallet-template$

3. Run your docker container

Important

	Make sure that the path immediately following the -v flag is correct! ie. /home/adam/Desktop/blg

	This path must exist on your host and the blg directory must contain the wallet-template repo.

	Also, take extra care and ensure that the path is correct for your OS.

Attention

	If you previously ran the container to confirm the prerequisites were completed then first stop and remove this test container.

docker stop blg-env && docker rm blg-env

	Example output:

adam@adam:~/Desktop/blg$ docker stop blg-env && docker rm blg-env
blg-env
blg-env
adam@adam:~/Desktop/blg$

Linux

docker run -dit -p 3000:3000 -p 8545:8545 -v /home/<USERNAME>/Desktop/blg:/blg --name=blg-env blockchainlg/dapp-dev-env

Mac

docker run -dit -p 3000:3000 -p 8545:8545 -v /Users/<USERNAME>/Desktop/blg:/blg --name=blg-env blockchainlg/dapp-dev-env

Windows
- If you have not already, follow the steps here [https://rominirani.com/docker-on-windows-mounting-host-directories-d96f3f056a2c] to share your C drive with docker.

docker run -dit -p 3000:3000 -p 8545:8545 -v c:/Users/<USERNAME>/desktop/blg:/blg --name=blg-env blockchainlg/dapp-dev-env

Docker Machine

docker run -dit -p 3000:3000 -p 8545:8545 -v /c/Users/<USERNAME>/Desktop/blg:/blg --name=blg-env blockchainlg/dapp-dev-env

	Example output:

adam@adam:~$ docker run -dit -p 3000:3000 -p 8545:8545 -v /home/adam/Desktop/blg:/blg --name=blg-env blockchainlg/dapp-dev-env
1bb232a56e6868e2bc4dbeaf86405ec3ed892090809fcab1823cab38e8337dc1
adam@adam:~$

Attention

Common Error:

adam@adam:~/Desktop/blg$ docker run -dit -p 3000:3000 -p 8545:8545 -v /home/adam/Desktop/blg:/blg --name=blg-env blockchainlg/dapp-dev-env
docker: Error response from daemon: Conflict. The container name "/blg-env" is already in use by container "9c52f3787e28c64b197e22ec509fb2a73cd5066543ec6345956e11b6e69ba41c". You have to remove (or rename) that container to be able to reuse that name.
See 'docker run --help'.

Solution:

docker stop blg-env && docker rm blg-env

	Examle Output

adam@adam:~/Desktop/blg$ docker stop blg-env && docker rm blg-env
blg-env
blg-env
adam@adam:~/Desktop/blg$

4. Attach into the container

Container will serve as your virtual environment.

docker exec -it blg-env bash

	Example output:

adam@adam:~$ docker exec -it blg-env bash
root@182d123ec039:/blg/wallet-template#

5. Install dependencies

Attention

ONLY Docker Machine

yarn --no-bin-links
yarn global add react-scripts

Mac, Linux, Windows NOT Docker Machine

yarn

	Example output:

root@2e9e0eda980d:~/blg/wallet-template# yarn
yarn install v1.2.0
[1/4] Resolving packages...
[....]
Done in 42.65s.
root@2e9e0eda980d:~/blg/wallet-template#

6. Start the app

Note

The videos will demonstrate a window manager being used, screen, and if preferred you may do so at this time as well, however the following instructions will assume this is not the case and will simply create multiple tabs within your terminal window.

CHOKIDAR_USEPOLLING=true yarn start

	Example output:

CHOKIDAR_USEPOLLING=true yarn start
Starting the development server...

Compiled successfully!

You can now view my-app in the browser.

 Local: http://localhost:3000/
 On Your Network: http://172.17.0.2:3000/

Note that the development build is not optimized.
To create a production build, use yarn build.

	Load the app in chrome, localhost:3000 [http://localhost:3000/]

END Stage 1: Dev Enviroment Set up and Application Bootstrapped!

Stage 2: Testing Your Token

Video Tutorial [https://drive.google.com/open?id=17TlqJ0571ElgB9yimc4WnAWCRNKFq6dz]

1. Create a new tab in your terminal window or a new terminal window for our Ethereum node

Note

While within the terminal window select File -> Open Terminal to create a new window.

To create a new tab from within a terminal window:

ctrl+shft+t

	Example output: Result is a new empty terminal, in the same directory you were when you initially entered your container. This will push you out of the container.

adam@adam:~/Desktop/blg$

2. Attach back into the container in the Etheruem node tab

docker exec -it blg-env bash

	Example output:

adam@adam:~/Desktop/blg$ docker exec -it blg-env bash
root@182d123ec039:/blg/wallet-template#

3. Start up your Ethereum node, ganache-cli

ganache-cli

	Example output:

ganache-cli
Ganache CLI v6.0.3 (ganache-core: 2.0.2)
[...]
Listening on localhost:8545

4. Create a new window or tab for our Truffle commands

Note

While within the terminal window select File -> Open Terminal to create a new window.

To create a new tab from within a terminal window:

ctrl+shft+t

	Example output: Result is a new empty terminal, in the same directory you were when you initially entered your container. This will push you out of the container.

adam@adam:~/Desktop/blg$

5. Attach back into the container in the Truffle tab

docker exec -it blg-env bash

	Example output:

adam@adam:~/Desktop/blg$ docker exec -it blg-env bash
root@182d123ec039:/blg/wallet-template#

6. Create the Test Case

Note

	contracts/Token.sol has been provided or do update it with the Token that was completed previously.

	Also one test file template has been provided in order to test the buy method was implemented correctly.

	Open the repo, ~/Desktop/blg/wallet-template, in your text editor, atom, sublime or the like and we can get to coding!

	Open the test file within Sublime, src/test/test_buy.js

	Import the token’s build artifacts, src/test/test_buy.js line 2

const Token = artifacts.require("./Token.sol")

	Define the owner account, note truffle test exposes the accounts array for us, line 6

const owner = accounts[0]

	Create a new instance of the token contract, line 10

const token = await Token.new({ from: owner })

	Specify the wei value of tokens you wish to purchase, line 13

const value = 100

	Send the transaction to the token’s buy method, line 16

const txResponse = await token.buy({ from: owner, value })

	Pull the rate from the token, line 19

const rate = await token.rate()

	Compute the token amount to be minted to the buyer, line 22

const tokenAmount = value * rate

	Access the event object from the transaction receipt, line 25

const event = txResponse.logs[0]

	Assert the correct values were emitted, line 28-31

assert.equal(event.event, 'TokensMinted', 'TokensMinted event was not emitted.')
assert.equal(event.args.to, owner, 'Incorrect to was emitted.')
assert.equal(event.args.value, value, 'Incorrect value was emitted.')
assert.equal(event.args.totalSupply.toNumber(), tokenAmount, 'Incorrect totalSupply was emitted.')

Ensure the state of the contract is updated correctly

	Assert the buyer’s balance is correct, line 34-35

const balance = await token.balanceOf(owner)
assert.equal(balance.toNumber(), tokenAmount, 'Incorrect token balance.')

	Assert the total supply is correct, line 38-39

const supply = await token.totalSupply()
assert.equal(supply.toNumber(), tokenAmount, 'Incorrect total supply.')

7. Execute the Test Case

cd src && truffle test

	Example output:

cd src && truffle test
Using network 'development'.
Contract: Token.buy()
 ✓ should buy new tokens. (133ms)
1 passing (148ms)
#

END Stage 2: Testing Your Token

Stage 3: Token Deployment

Video Tutorial [https://drive.google.com/open?id=1sdLtnunj3crUAMX6Q_qqYOITJ0Z94Ee0]

Note

	A default, and required, initial migration script(src/migrations/1_initial_migration.js), has been included. Do not remove this script.

1. Write the Deployment Script

	Create a new file in order to deploy the token, src/migrations/2_deploy_contracts.js

	Simply right-click on the migrations directory and create the new file.

	Import the token’s artifacts, line 1

const Token = artifacts.require("./Token.sol");

	Define the owner account, note truffle migrate exposes the web3 object, line 2

const owner = web3.eth.accounts[0]

	Utilize truffle’s deployer object in order to deploy an instance of the token, line 4-6

module.exports = deployer => {
 deployer.deploy(Token, { from: owner })
}

2. Deploy your Token

truffle migrate

	Example output:

truffle migrate
Using network 'development'.

Running migration: 1_initial_migration.js
 Deploying Migrations...
 ... 0x26ff3f480502a228f34363e938289c3164edf8bc49c75f5d6d9623a05da92dbf
 Migrations: 0x3e47fad1423cbf6bd97fee18ae2de546b0e9188a
Saving successful migration to network...
 ... 0x19a7a819df452847f34815e2573765be8c26bac43b1c10d3b7528e6d952ac02c
Saving artifacts...
Running migration: 2_deploy_contracts.js
 Deploying Token...
 ... 0x4a69e7840d0f96067964fb515ffea1a04a98fc5759849d3308584af4770c8f7b
 Token: 0xd58c6b5e848d70fd94693a370045968c0bc762a7
Saving successful migration to network...
 ... 0xd1e9bef5f19bb37daa200d7e563f4fa438da60dbc349f408d1982f8626b3c202
Saving artifacts...
#

END Stage 3: Token Deployment

Stage 4: Token Interface

Video Tutorial [https://drive.google.com/open?id=18bU8mbWN1p6GrPnTLck7k14ByhngvBMg]

1. Import the web3 library, src/app.js #line 5

import Web3 from 'web3'

2. Import the token build artifacts into the application, app.js#line 14

import tokenArtifacts from './build/contracts/Token.json'

3. Create a web3 connection to the local Ethereum node(ganache-cli), app.js#line 26

this.web3 = new Web3(new Web3.providers.HttpProvider("http://localhost:8545"));

4. Check if the connection was successful, app.js#line 28-30

if (this.web3.isConnected()) {

}

5. Detect the current network id that is connected, app.js#line 29-31

this.web3.version.getNetwork(async (err, netId) => {

})

6. Extract the recently deploy token address from the build artifacts, app.js#line 30-33

// Create a reference object to the deployed token contract
if (netId in tokenArtifacts.networks) {
 const tokenAddress = tokenArtifacts.networks[netId].address
}

7. Create a client side reference to the contract and save it in state, app.js#line 33-35

const token = this.web3.eth.contract(tokenArtifacts.abi).at(tokenAddress)
this.setState({ token })
console.log(token)

8. Refresh your chrome browser and open up the developer console

This can be accomplished by right-clicking anywhere in the chrome browser and in the dropdown selecting inspect or inspect element or by utilizing the shortcut: ctrl+shift_i.

View in the developer console the token instance is now present

	Example output:

Contract {_eth: Eth, transactionHash: null, address: "0xd58c6b5e848d70fd94693a370045968c0bc762a7", abi: Array[20]}

END Stage 4: Token Interface

Stage 5: Load Available On-chain Accounts

Video Tutorial [https://drive.google.com/open?id=1hqqMw2Fv7wtqgRKl6TLoAb5go3BOqBkR]

1. Get the available accounts from the web3 connection, this is to wrap the existing token interface code, line 29 & 39

this.web3.eth.getAccounts((err, accounts) => { // Line 29

}) // Line 39

2. Set the default account to use, line 30

const defaultAccount = this.web3.eth.accounts[0]

3. Load the available accounts into the user interface

	Import the Material UI MenuItem, line 8

import MenuItem from 'material-ui/MenuItem';

	Add an availableAccounts arrary into the app’s state, line 21

availableAccounts: [],

	Append all accounts into the UI dropdown menu, line 34-41

// Append all available accounts
for (let i = 0; i < accounts.length; i++) {
 this.setState({
 availableAccounts: this.state.availableAccounts.concat(
 <MenuItem value={i} key={accounts[i]} primaryText={accounts[i]} />
)
 })
}

4. Set the default account

	Add a defaultAccount variable to the state, line 22

defaultAccount: 0,

	Set the defaultAccount in the state when the drowdown value changes, line 86

this.setState({ defaultAccount })

END Stage 5: Load Available Accounts

Stage 6: Token Interaction - GET

Video Tutorial [https://drive.google.com/open?id=11WaCAk_sc2S4W-az-zV-TD6Le3tGqx5q]

1. Load the token metadata from the contract

	Add the token’s symbol to the state, line 23

tokenSymbol: 0,

	Load the token’s symbol, line 52-55

// Set token symbol below
token.symbol((err, tokenSymbol) => {
 this.setState({ tokenSymbol })
})

	Add the token’s rate to the state, line 23

rate: 1,

	Load the token’s rate, line 58-61

// Set wei / token rate below
token.rate((err, rate) => {
 this.setState({ rate: rate.toNumber() })
})

END Stage 6: Token Interaction - GET

Stage 7: Load Account Balances

Video Tutorial [https://drive.google.com/open?id=1FH7__0b1pwuLT32Ay9efkKV81KPmHEeu]

1. Load the default account’s ETH and Token balances, completing the loadAccountBalances method

	Confirm the token has been loaded, line 73-75

if (this.state.token) {

}

	Add tokenBalance to the state, line 24

tokenBalance: 0,

	Set the token balance, line 75-78

// Set token balance below
this.state.token.balanceOf(account, (err, balance) => {
 this.setState({ tokenBalance: balance.toNumber() })
})

	Add ethBalance to the state, line 23

ethBalance: 0,

	Set the eth balance, line 81-84

// Set ETH balance below
this.web3.eth.getBalance(account, (err, ethBalance) => {
 this.setState({ ethBalance })
})

	Call the loadAccountBalances method on load, line 67

this.loadAccountBalances(defaultAccount)

	Also load the balances whenever a new account is selected in the dropdown, line 111

this.loadAccountBalances(this.state.availableAccounts[index].key)

2. View the default account balances and token information in your browser!

END Stage 7: Load Available Account Balances

Stage 8: Purchasing Tokens

Video Tutorial [https://drive.google.com/open?id=1qa87ghBevvIpNdYNohVfTiY8TXJjXLsV]

1. Add token amount to the state, line 21.

amount: 0,

2. Complete the method to buy tokens, sending a transaction to the token contract, line 99-104.

this.state.token.buy({
 from: this.web3.eth.accounts[this.state.defaultAccount],
 value: amount
}, (err, res) => {
 err ? console.error(err) : console.log(res)
})

3. In the GUI buy tokens with several available accounts.

Note

Note transaction hash in the developer console

Example transaction hash: 0x4b396191e87c31a02e80160cb6a2661da6086c073f6e91e9bd1f796e29b0c983

4. Refresh the browser or select a different account and come back, and view the account’s balance of shiny new tokens!

END Stage 8: Purchasing Tokens

Stage 9: Events

Video Tutorial [https://drive.google.com/open?id=1gSHTciut91F17sU_E7DYhpZJE4LoH-Lu]

1. Add an event to listen for when tokens are transferred and reload the account’s balances, line 94-99

// Watch tokens transfer event below
this.state.token.Transfer({ fromBlock: 'latest', toBlock: 'latest' })
.watch((err, res) => {
 console.log(`Tokens Transferred! TxHash: ${res.transactionHash} \n ${JSON.stringify(res.args)}`)
 this.loadAccountBalances(this.web3.eth.accounts[this.state.defaultAccount])
})

2. Load the contract events, line 66

this.loadEventListeners()

3. Buy tokens and view the log confirmation in the developer console and token and ETH balance updated dynamically!

END Stage 9: Events

Stage 10: Transfer Tokens

Try this portion on your own! [Solution noted at the bottom]

The required components included:

	Add the transferAmount and transferUser to the app’s state.

	Add the React transfer tokens form component.

	Complete the transfer method to send the transfer transaction.

Finally transfer tokens between accounts and review balances.

END Stage 10: Transfer Tokens

Bonus: Extend Your Wallet

1. Metamask Integration

	Ensure Metamask is installed, unlocked and connected to the local client(localhost:8545).

	Fund your metamask account!

$ truffle console
truffle(development> web3.eth.sendTransaction({ from: web3.eth.accounts[0], to: 'METAMASK_ADDRESS', value: 1e18 })

	Transfer tokens to your metamask account(from within the application).

	Add a conditional to use the Metamask web3 provider if present, wallet-template/src/App.js#L35 [https://github.com/Blockchain-Learning-Group/exchange-eod3/blob/0779b46516bc5c697c5fb986cad1080b8c8121af/src/App.js#L49]

if (window.web3)
 this.web3 = new Web3(window.web3.currentProvider)
else

	Refresh the browser and connect to your Metamask account. View your Metamask account now available within the application.

2. Sync an Ethereum node of your own

Note

Look to setup a node locally or via Azure. Azure is a nice option to begin with as a node locally can be quite heavy and resource intensive.

	Getting Started With Azure [https://azure.microsoft.com/en-us/get-started/?v=17.39]

	Sync a Parity node to Kovan

	Instructions to deploy to Azure here [https://medium.com/@attores/creating-a-free-kovan-testnet-node-on-azure-step-by-step-guide-8f10127985e4]

	Parity Homepage [https://www.parity.io/]

	Sync a Geth node to Rinkeby

	Instructions here [https://gist.github.com/cryptogoth/10a98e8078cfd69f7ca892ddbdcf26bc]

	Geth Homepage [https://github.com/ethereum/go-ethereum]

3. Interact with your token that was deployed to Kovan

4. Interact with another participant’s token on Kovan

5. Enable the wallet to support multiple ERC20 tokens

Clean up

1. Detach from the container

ctrl+d

2. Stop the container

docker stop blg-env

	Example output:

adam@adam:~/$ docker stop blg-env
blg-env
adam@adam:~/$

BONUS

	Add withdraw functionality! Enable the token owner to withdraw the ETH put in to purchase tokens.

	Complete the sections from Blockchain Fundamentals [https://blg-dapp-fundamentals.readthedocs.io/en/latest/course-content/blockchain-fundamentals.html#bonus]

Solutions

Stage 10: Transfer Tokens

Video Tutorial [https://drive.google.com/open?id=1JPno5OLKUPTMdXO2O4YeXch1SZFyG297]

	Add the transferAmount and transferUser to the app’s state, line 28 & 29.

transferAmount: '',
transferUser: '',

	Add the React transfer tokens form component, line 150-161.

<div>
 <h3>Transfer Tokens</h3>
 <TextField floatingLabelText="User to transfer tokens to." style={{width: 400}} value={this.state.transferUser}
 onChange={(e, transferUser) => { this.setState({ transferUser }) }}
 />
 <TextField floatingLabelText="Amount." style={{width: 100}} value={this.state.transferAmount}
 onChange={(e, transferAmount) => { this.setState({ transferAmount })}}
 />
 <RaisedButton label="Transfer" labelPosition="before" primary={true}
 onClick={() => this.transfer(this.state.transferUser, this.state.transferAmount)}
 />
</div>

	Complete the transfer method to send the transfer transaction, line 117-124.

if (amount > 0) {
 // Execute token transfer below
 this.state.token.transfer(user, amount, {
 from: this.web3.eth.accounts[this.state.defaultAccount]
 }, (err, res) => {
 err ? console.error(err) : console.log(res)
 })
}

Complete Wallet Solution [https://github.com/Blockchain-Learning-Group/wallet-eod2]

	git clone https://github.com/Blockchain-Learning-Group/wallet-eod2.git

	cd wallet-eod2

	git checkout tags/2.0

DeXchange Project

View Completed DeXchange Demo [https://drive.google.com/open?id=1w5MYl3yPMLOJJOiXr2woXcxqcusDP1B0]

Stage 1: Restart Your Dev Environment and App

Note

Begin instructions in a fresh terminal instance. Not within any existing window manager, ie. screen or tmux.

Video Tutorial [https://drive.google.com/open?id=1OAUN_EmUnCAD0ZSjx5Q7_5R-7ZKd4O5n]

Attention

	Docker Machine ONLY - if Docker shell exited

	
	Double-click the Docker QuickStart icon on your Desktop to restart docker machine.

	Execute everything following from within the Docker shell.

1. Start your container back up

	Confirm container is not already running

docker ps

	Example output: Container IS running

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
fabb387d8088 blockchainlg/dapp-dev-env "node" 15 hours ago Up 15 hours 0.0.0.0:3000->3000/tcp, 0.0.0.0:8545->8545/tcp blg-env

	Example output: Container is NOT running

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

If the conainter is NOT running continue, else move to step 2

docker start blg-env

	Example output:

adam@adam:~$ docker start blg-env
blg-env
adam@adam:~$

2. Attach into your container

Container will serve as your virtual environment.

docker exec -it blg-env bash

	Example output:

adam@adam:~$ docker exec -it blg-env bash
root@9c52f3787e28:/blg/wallet-template#

3. Start the app

CHOKIDAR_USEPOLLING=true yarn start

	Example output:

CHOKIDAR_USEPOLLING=true yarn start
yarn run v1.2.0
$ react-scripts start
Starting the development server...

Compiled successfully!

You can now view my-app in the browser.

 Local: http://localhost:3000/
 On Your Network: http://172.17.0.2:3000/

Note that the development build is not optimized.
To create a production build, use yarn build.

4. Create a new tab in your terminal window or a new terminal window for our Ethereum client

Note

While within the terminal window select File -> Open Terminal to create a new window.

To create a new tab from within a terminal window:

ctrl+shft+t

	Example output: Result is a new empty terminal, in the same directory you were when you initially entered your container. This will push you out of the container.

adam@adam:~/Desktop/blg$

5. Attach back into the container and start Etheruem node

docker exec -it blg-env bash

	Example output:

adam@adam:~/Desktop/blg$ docker exec -it blg-env bash
root@182d123ec039:/blg/wallet-template#

	start the node(emulator)

ganache-cli

	Example output:

root@182d123ec039:/blg/wallet-template# ganache-cli
Ganache CLI v6.0.3 (ganache-core: 2.0.2)
[...]
Listening on localhost:8545

6. Create a new window or tab for our Truffle commands

Note

While within the terminal window select File -> Open Terminal to create a new window.

To create a new tab from within a terminal window:

ctrl+shft+t

	Example output: Result is a new empty terminal, in the same directory you were when you initially entered your container. This will push you out of the container.

adam@adam:~/Desktop/blg$

	Attach back into the container

docker exec -it blg-env bash

	Example output:

adam@adam:~/Desktop/blg$ docker exec -it blg-env bash
root@182d123ec039:/blg/wallet-template#

7. Deploy your Token

cd src && truffle migrate

	Example output:

root@182d123ec039:/blg/wallet-template# cd src && truffle migrate
Using network 'development'.

Running migration: 1_initial_migration.js
 Deploying Migrations...
 [..]
 Deploying Token...
 Token: 0xd58c6b5e848d70fd94693a370045968c0bc762a7
 [..]
Saving artifacts...
#

10. Load the app in chrome, localhost:3000 [http://localhost:3000/]

END Stage 1: Restart Your Dev Environment and App

Stage 2: Create the Exchange Contract

Video Tutorial [https://drive.google.com/open?id=1AF3ivpmyaWRlVbcFTrkyeF4EdoyTMqzt]

1. Create a new file `line

Exchange.sol

2. Copy Exchange Template [https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/exercises/Exchange.sol] into the new file, wallet-template/src/contracts/Exchange.sol

3. Review the contents of the provided template.

END Stage 2: Create the Exchange Contract

Stage 3: Write the submitOrder Method

Video Tutorial [https://drive.google.com/open?id=17tk8rhkojU7mgxl2xbvIZLBf0ZvgJ5Ca]

1. Ensure the exchange has been given a sufficient token allowance, line 31

require(Token(_bidToken).allowance(msg.sender, this) >= _bidAmount, "Insufficient allowance given.");

2. Compute a unique id for the order, line 34

bytes32 orderId = keccak256(msg.sender, _bidToken, _bidAmount, _askToken, _askAmount);

3. Confirm this order does not already exist, line 35

require(orderBook_[orderId].askAmount == 0, "Order already exists."); // check for existence, default to 0, assume no one is giving tokens away for free

4. Add the order to the order book, line 38-44

orderBook_[orderId] = Order({
 maker: msg.sender,
 bidToken: _bidToken,
 bidAmount: _bidAmount,
 askToken: _askToken,
 askAmount: _askAmount
});

5. Emit the order submitted event, line 47

emit OrderSubmitted(orderId, msg.sender, _bidToken,_bidAmount, _askToken, _askAmount);

END Stage 3: Write the submitOrder Method

Stage 4: Test the submitOrder Method

Video Tutorial [https://drive.google.com/open?id=1q8o3AwNVX7KFkx2ge5hF9rqHAmFGxnaN]

1. Create a new file wallet-template/src/test/test_submit_executeOrder.js

test_submit_executeOrder.js

2. Copy the test template [https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/exercises/test_submit_executeOrder-template.js] into wallet-template/src/test/test_submit_executeOrder.js

Test Setup

3. Define the accounts to be used, maker and taker, line 12-13

const maker = accounts[0]
const taker = accounts[1]

4. Deploy a new exchange and token in the test case, line 19-20

exchange = await Exchange.new()
token = await Token.new()

5. Define the order parameters, line 25-29

const rate = await token.rate()
const bidToken = token.address
const bidAmount = 100
const askToken = 0
const askAmount = 100

6. Setup the transaction by minting tokens to the maker and giving allowance to the exchange, line 34-35

await token.buy({ from: maker, value: bidAmount / rate });
await token.approve(exchange.address, bidAmount, { from: maker })

7. Send the transaction submitting the order, line 40-44

const tx = await exchange.submitOrder(bidToken, bidAmount, askToken, askAmount, {
 from: maker,
 gas : 4e6
 }
)

Assertions

8. Confirm the correct event emitted, line 49-50

const log = tx.logs[0]
assert.equal(log.event, 'OrderSubmitted', 'Event not emitted')

9. Confirm the order stored on-chain is correct, line 55-61

orderId = tx.logs[0].args.id
const order = await exchange.orderBook_(orderId)
assert.equal(order[0], maker, 'maker incorrect')
assert.equal(order[1], bidToken, 'bid token incorrect')
assert.equal(order[2], bidAmount, 'bid amount incorrect')
assert.equal(order[3], askToken, 'ask token incorrect')
assert.equal(order[4], askAmount, 'ask amount incorrect')

10. Execute the test and confirm it is passing!

truffle test test/test_submit_executeOrder.js

	Example output:

truffle test test/test_submit_executeOrder.js
Contract: Exchange.submitOrder() && executeOrder()
✓ submitOrder(), should succeed by adding a new order to the orderBook on-chain. (183ms)
✓ executeOrder(), should succeed by trading the tokens. Maker bids ether.

2 passing (365ms)

 #

END Stage 4: Test the submitOrder method

Stage 5: Write the executeOrder method

Try this part on you own! Solutions at the bottom…

Stage 6: Test the executeOrder method

Try this part on you own! Solutions at the bottom…

Note

This will fail at first and there is a bug located in Token.sol's transferfrom method for you(you are welcome!)
Take a close look at line 76: require(_amount <= 0, 'Cannot transfer amount <= 0, Token.transferFrom()');

Stage 7: Deploy the Exchange

Video Tutorial [https://drive.google.com/open?id=1FMZi0uE36mxj8yfwfl16tZCtjbIbiFsZ]

1. Add the exchange to the deployment script(src/migrations/2_deploy_contracts), line

	Import the exchange artifacts, line 2

const Exchange = artifacts.require("./Exchange.sol");

	Deploy the Exchange, line 6

deployer.deploy(Exchange, { from: owner })

2. Deploy the exchange(a new token).

truffle migrate --reset

	Example output:

truffle migrate --reset
Using network 'development'.

Running migration: 1_initial_migration.js
 Replacing Migrations...
 ... 0xaf3df4616497a63d75879d900ee9bd580881e3d88b359942aa89beb12ff05416

 Migrations: 0x4d52502c81f1b7119a59d7a69ca8b061d557e071
Saving successful migration to network...
 ... 0xa57ed9864bf4a34835ad0f074083030011e9f36aae813b58182f7d8cde8d4571

Saving artifacts...
Running migration: 2_deploy_contracts.js
 Replacing Token...
 ... 0xfb84339717eebb27f7593d5419633086c6961a46736d9f730185f9584bbca671

 Token: 0x1f8fbc989937346cbc923da292b1b6f9f958eafe
 Deploying Exchange...
 ... 0xd4566da630267b7f41a554b3773ea4c2880d98828275632e4c9e6fd7f8d26b03

 Exchange: 0xb9d7ffb8c064384f167199025ef2ad0a130c49c6
Saving successful migration to network...
 ... 0x97f51a0d5d97de1bf4d3f5028783349616fa25e0ddbadadecafe76fb1895189d

Saving artifacts...
#

END Stage 7: Deploy the Exchange

Stage 8: Add Basic Routing to the DApp

1. Add basic routing to render navigate between the exchange and wallet components

Video Tutorial [https://drive.google.com/open?id=1hcdKMRLm6w4Pyewqse3uaIFQeg-s4VcU]

	Add the react-router-dom package to the project

yarn add react-router-dom@4.3.1

	Example output:

root@0121f7449409:/blg# yarn add react-router-dom@4.3.1
yarn add v1.2.0
[1/4] Resolving packages...
[..]
Done in 5.34s.
root@0121f7449409:/blg#

	Import the router components into the app, line 2

import { BrowserRouter, Route, Link } from 'react-router-dom'

	Wrap components with the router, line 172 & line 179

<BrowserRouter>
</BrowserRouter>

	Add a button to navigate to the exchange route, line 137-139

<Link to={'exchange'}>
 <RaisedButton label=">>> Exchange" secondary={true} fullWidth={true}/>
</Link>

	Confirm selection of the new button will change the route in the url to /exchange

2. Create the exchange component and the routes

Video Tutorial [https://drive.google.com/open?id=1qR09izk5ewS9_yFrnpzZARSXXqhNbZjb]

	Add a template exchange component with a link back to the wallet, line 173-177

const exchange = <div>
 <Link to={'/'}>
 <RaisedButton label="Wallet <<<" primary={true} fullWidth={true}/>
 </Link>
</div>

	Add a default route, line 186

<Route exact={true} path="/" render={() => component}/>

	And an exchange route, line 187

<Route exact={true} path="/exchange" render={() => exchange}></Route>

END Stage 8: Add Basic Routing to the DApp

Stage 9: Create the Reference Exchange Object

Look to follow the exact same process used for the token. Solutions at the bottom…

Note

Some hints…

	Build Artifacts

	State attribute

	Contract address

	Contract interface

	Web3 to create reference object

	Load the object into state

Stage 10: Create the UI Component to Submit an Order

Video Tutorial [https://drive.google.com/open?id=1eWsqfVTND5H7zRbH156I0iiG92H4482_]

1. Add the components to load the active accounts, line 184-191

<h3>Active Account</h3>
<DropDownMenu maxHeight={300} width={500} value={this.state.defaultAccount} onChange={this.handleDropDownChange}>
 {this.state.availableAccounts}
</DropDownMenu>
<h3>Account Balances</h3>
<p className="App-intro">{this.state.ethBalance / 1e18} ETH</p>
<p className="App-intro"> {this.state.tokenBalance} {this.state.tokenSymbol}</p>

2. Add the form to submit an order, line 192-207

<h3>Submit an Order!</h3>
<p>The default exchange supports only the pairing of {this.state.tokenSymbol} / ETH</p>
<TextField floatingLabelText="Bid" style={{width: 75}} value={this.state.tokenSymbol} />
<TextField floatingLabelText="Amount" style={{width: 75}} value={this.state.bidAmount}
 onChange={(e, bidAmount) => this.setState({ bidAmount })}
/>
<TextField floatingLabelText="Ask" style={{width: 75}} value="ETH" />
<TextField floatingLabelText="Amount" style={{width: 75}} value={this.state.askAmount}
 onChange={(e, askAmount) => this.setState({ askAmount })}
/>

<RaisedButton label="Submit" labelPosition="after" style={{width: 300}} secondary={true}
 onClick={() => this.submitOrder()}
/>

END Stage 10: Create the UI Component to Submit an Order

Stage 11: Create the Functionality to Submit an Order

Video Tutorial [https://drive.google.com/open?id=1ej57vtJulCG77b0esRE5v8QPdNLZik_B]

1. Add the bid and ask amounts to the state, line 23-24

askAmount: 1,
bidAmount: 10,

2. Write the method to submit an order, line 142-162

// Submit a new order to the order book.
submitOrder() {
 const { askAmount, bidAmount, defaultAccount, exchange, token } = this.state
 const from = this.web3.eth.accounts[defaultAccount]
 const gas = 1e6

 // First give the exchange the appropriate allowance
 token.approve(exchange.address, bidAmount, { from, gas },
 (err, res) => {
 if (err) {
 console.error(err)
 } else {
 console.log(res)
 // Submit the order to the exchange
 exchange.submitOrder(token.address, bidAmount, '0', askAmount*10**18, { from, gas },
 (err, res) => {
 err ? console.error(err) : console.log(res)
 })
 }
 })
}

3. Buy tokens to ensure the account has a sufficient token balance.

4. Submit an order and view the transaction hashes(approve and submitOrder) in the browser developer console.

END Stage 11: Create the Functionality to Submit an Order

Stage 12: Listen for Submitted Order Events

Video Tutorial [https://drive.google.com/open?id=1KddwYbWGJOYCfv7fkIO9IaAbJvctC6nX]

1. Create an event listener for the order submitted event, line 113-117

this.state.exchange.OrderSubmitted({ fromBlock: 'latest', toBlock: 'latest' })
.watch((err, res) => {
 console.log(`Order Submitted! TxHash: ${res.transactionHash} \n ${JSON.stringify(res.args)}`)
 this.loadAccountBalances(this.web3.eth.accounts[this.state.defaultAccount])
})

2. Submit an order and view the caught event.

END Stage 12: Listen for Submitted Order Events

Stage 13: Create the Order Book Table

Video Tutorial [https://drive.google.com/open?id=1vapUmFyNjS3Sf6i63LXGei4LIfTVBlao]

1. Import Material UI table components, line 14

import { Table, TableBody, TableHeader, TableHeaderColumn, TableRow, TableRowColumn } from 'material-ui/Table';

2. Add the order book to the state, line 31

orderBook: [],

3. Add the order book component, line 240-257

<h3>Order Book</h3>
<p>Select an order to execute!</p>
<RaisedButton label="Execute Order" labelPosition="after" style={{width: 300}} secondary={true}
 onClick={() => this.executeOrder(this.selectedOrder)}
/>
<Table style={{ maxHeight: 500, overflow: "auto" }} fixedHeader={true} multiSelectable={false}
 onRowSelection={r => { if (this.state.orderBook[r[0]]) this.selectedOrder = this.state.orderBook[r[0]].key}}>
 <TableHeader>
 <TableRow>
 <TableHeaderColumn>Maker</TableHeaderColumn>
 <TableHeaderColumn>Bid Token</TableHeaderColumn>
 <TableHeaderColumn>Bid Amount</TableHeaderColumn>
 <TableHeaderColumn>Ask Token</TableHeaderColumn>
 <TableHeaderColumn>Ask Amount</TableHeaderColumn>
 </TableRow>
 </TableHeader>
 <TableBody> { this.state.orderBook } </TableBody>
</Table>

4. View new order book table in the ui.

END Stage 13: Create the Order Book Table

Stage 14: Add an Order to the Order Book When Submitted

Video Tutorial [https://drive.google.com/open?id=1JC5UHJ6jRdm3lK5aWP0re7y0o5ZDlWxj]

1. Create an addOrder method, line 172-194

// Add a new order to the order book
addOrder(order) {
 const { orderBook, tokenSymbol } = this.state
 const { id, maker, askAmount, bidAmount } = order;

 // Confirm this order is not already present
 for (let i = 0; i < orderBook.length; i++) {
 if (orderBook[i].key === id) {
 console.error(`Order already exists: ${JSON.stringify(order)}`)
 return
 }
 }

 const row = <TableRow key={id}>
 <TableRowColumn>{maker}</TableRowColumn>
 <TableRowColumn>{tokenSymbol}</TableRowColumn>
 <TableRowColumn>{bidAmount.toNumber()}</TableRowColumn>
 <TableRowColumn>ETH</TableRowColumn>
 <TableRowColumn>{askAmount.toNumber() / 10**18 }</TableRowColumn>
 </TableRow>

 this.setState({ orderBook: [row].concat(orderBook) })
}

2. Add the order to the order book when the order submitted event is fired, line 119

this.addOrder(res.args)

3. Submit an order and view it added to the order book.

END Stage 14: Add an Order Element to the Table When Submitted

Stage 15: Select and execute an Order

Exactly as we sent a transaction to submit the order! Solutions at the bottom…

Note

Hint: first you will need to add an attribute to the state to hold the selected order!

Stage 16: Listen for executed order events

Video Tutorial [https://drive.google.com/open?id=1lxMdxz38VyC--tTRgd0de8mv66FM27hP]

1. Add the method to remove the order from the order book table, line 218-230

// Remove an order from the orderBook.
removeOrder(orderId) {
 const { orderBook } = this.state

 for (let i = 0; i < orderBook.length; i++) {
 if (orderBook[i].key === orderId) {
 let updatedOrderBook = orderBook.slice();
 updatedOrderBook.splice(i, 1);
 this.setState({ orderBook: updatedOrderBook })
 return
 }
 }
}

2. Add an event to listen for executed orders, line 123-127

this.state.exchange.OrderExecuted({ fromBlock: 'latest', toBlock: 'latest' })
.watch((err, res) => {
 console.log(`Order Executed! TxHash: ${res.transactionHash} \n ${JSON.stringify(res.args)}`)
 this.removeOrder(res.args.id)
})

3. Execute an order and see that it has been removed from the table.

END Stage 16: Listen for executed order events

Stage 17: Load the Order Book

Video Tutorial [https://drive.google.com/open?id=1AV9j-g-MVTo22fvlLdROGN1vDKRA-6ws]

1. Add a method to load the order book, line 238-253

// Load all orders into the order book via exchange events
loadOrderBook() {
 const { exchange } = this.state

 exchange.OrderSubmitted({}, {fromBlock: 0, toBlock: 'latest'})
 .get((err, orders) => {
 for (let i = 0; i < orders.length; i++) {
 // confirm the order still exists then append to table
 exchange.orderBook_(orders[i].args.id, (err, order) => {
 if (order[4].toNumber() !== 0) {
 this.addOrder(orders[i].args)
 }
 })
 }
 })
}

2. Load the order book when the page renders, line 81

this.loadOrderBook()

3. View the loaded orders in the order book table.

Success your exchange running locally is complete! Try it out!

Bonus: Extend Your Exchange

	Sync a node of your own! Instructions can be found here [http://blg-dapp-fundamentals.readthedocs.io/en/latest/course-content/blockchain-fundamentals.html#sync-an-ethereum-node-of-your-own]

	Add other ERC20 / ETH pairings

	Enable ERC20 / ERC20 pairings

	Automated order matching, partial fills, matched by ratio not user selected.

	Write tests for the exchange and token, failure cases

	Update gas amounts sent with each transaction. Leverage web3’s gas estimation!

	Sort the orders in the order book table

Clean up

1. Detach from the container

ctrl+d

2. Stop the container

docker stop blg-env

	Example output:

adam@adam:~/$ docker stop blg-env
blg-env
adam@adam:~/$

Solutions

State 5: Write the executeOrder method

Video Tutorial [https://drive.google.com/open?id=18WgT4mDWW5EcMUM_BbPACRhZ1gwQYgh9]

	Load the order struct into memory(will save gas cost for subsequent reads), line 53

Order memory order = orderBook_[_orderId];

	Confirm enough ether was sent with the transaction to fill the order, line 56

require(msg.value == order.askAmount);

	Execute the trade.

	Moving ether to the maker, line 59

order.maker.transfer(order.askAmount); // safe and will throw on failure

	AND tokens to the taker, line 60

require(Token(order.bidToken).transferFrom(order.maker, msg.sender, order.bidAmount), "transferFrom failed.");

	Remove the filled order from the order book, line 63

delete orderBook_[_orderId];

	Emit the order executed event, line 66

emit OrderExecuted(_orderId, order.maker, msg.sender, order.bidToken, order.bidAmount, order.askToken, order.askAmount);

END Stage 5: Write the executeOrder method

Stage 6: Test the executeOrder method

Video Tutorial [https://drive.google.com/open?id=10tTq0j0antqHE-N9YjS9RYpM3oK34HrW]

Test Setup

	Get the initial ether balances for both accounts, line 68-69

const makerBalanceBefore = web3.eth.getBalance(maker).toNumber()
const takerBalanceBefore = web3.eth.getBalance(taker).toNumber()

	Submit the transaction to execute the order, line 74-79

const tx = await exchange.executeOrder(orderId, {
 from: taker,
 gas : 4e6,
 value: 100 // ask amount from previously submitted order
 }
)

Assertions

	Confirm the execute order event emitted, line 84-85

const log = tx.logs[0]
assert.equal(log.event, 'OrderExecuted', 'Event not emitted')

	Confirm the token balances updated correctly, line 90-93

const makerTokenBalance = (await token.balanceOf(maker)).toNumber()
const takerTokenBalance = (await token.balanceOf(taker)).toNumber()
assert.equal(makerTokenBalance, 0, 'Maker token balance incorrect.')
assert.equal(takerTokenBalance, 100, 'Taker token balance incorrect.')

	Confirm the ether balances updated correctly, line 98-102

const makerBalanceAfter = web3.eth.getBalance(maker).toNumber()
const takerBalanceAfter = web3.eth.getBalance(taker).toNumber()
assert.equal(makerBalanceAfter, makerBalanceBefore + 100, 'Maker eth balance incorrect')
// Note taker also had to pay for the executeOrder tx
assert.isBelow(takerBalanceAfter, takerBalanceBefore - 100, 'Taker eth balance incorrect')

	Confirm the order was removed from the order book, line 107-108

const order = await exchange.orderBook_(orderId)
assert.equal(order[4], 0)

	Fix the token’s transferFrom method src/contracts/Token.sol line 76

require(_amount > 0, 'Cannot transfer amount <= 0, Token.transferFrom()');

	Execute the test and confirm it is passing!

truffle test test/test_submit_executeOrder.js

	Example output:

truffle test test/test_submit_executeOrder.js
Contract: Token.buy()
✓ should buy new tokens. (116ms)

Contract: Exchange.submitOrder() && executeOrder()
 ✓ submitOrder(), should succeed by adding a new order to the orderBook on-chain. (298ms)
 ✓ executeOrder(), should succeed by trading the tokens. Maker bids ether. (493ms)

3 passing (951ms)

#

.. success::
 Success, The exchange contract is complete!

END Stage 6: Test the executeOrder method

Stage 9: Create the Reference Exchange Object

Video Tutorial [https://drive.google.com/open?id=1OI_jnes4r791f8sOlpaiDjkpnmL5-L2l]

	Import the exchange build artifacts, line 17

import exchangeArtifacts from './build/contracts/Exchange.json'

	Add the exchange to the state, line 27

exchange: null, // exchange contract

	Create the reference object to the deployed exchange, line 61-64

const exchangeAddress = exchangeArtifacts.networks[netId].address
const exchange = this.web3.eth.contract(exchangeArtifacts.abi).at(exchangeAddress)
this.setState({ exchange })
console.log(exchange)

	View the exchange object in the browser developer console.

END Stage 9: Create the Reference Exchange Object

Stage 15: Select and execute an Order

Video Tutorial [https://drive.google.com/open?id=1tCON6wXLBd8LxkPVn-q8VFMpYd3kYz3W]

	Add a selectedOrder attribute to the state, line 33

selectedOrder: null

	Add a method to execute the selected order, line 199-216

// Execute a selected order
executeOrder(orderId) {
 if (orderId) {
 const { exchange } = this.state
 const from = this.web3.eth.accounts[this.state.defaultAccount]
 const gas = 1e6

 // Get the ask amount of the order from the contract, ether to send along with the tx
 exchange.orderBook_(orderId, (err, order) => {
 exchange.executeOrder(orderId, { from, gas, value: order[4] },
 (err, res) => {
 err ? console.error(err) : console.log(res)
 })
 })
 } else {
 console.error(`Undefined orderId: ${orderId}`)
 }
}

END Stage 15: Select and execute an order

Solidity Exercises

1. Voting Exercise [https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/exercises/Voting_02.sol]

	View Final Solution Demo [https://drive.google.com/open?id=1HUlqRB62Y57RXIbGmp4ckmHuc2cpHqkb]

Video Tutorial[1.1 - 1.3][no audio] [https://drive.google.com/open?id=13DBLIclqpJ9iNtRWzSvJ8NGzBM-LTbdD]

1.1 Copy the exercise over to remix [https://remix.ethereum.org/#optimize=false&version=soljson-v0.4.24+commit.e67f0147.js].

1.2 Define the duration of the vote, Line 7

uint256 public constant VOTE_DURATION = 2 minutes;

1.3 Complete the castVote method, beginning on Line 36

	1.3a When a vote has been cast increment that candidates total, Line 41

candidateTotals_[_candidate] += 1;

	1.3b Create an event for when a vote is cast, Line 18

event VoteCast(address voter, string votedFor);

	1.3c Emit an event that a new vote has been cast, Line 46

emit VoteCast(msg.sender, candidateIds_[_candidate]);

	1.3d Run the contract, deploying within remix and test the castVote method.

Video Tutorial[1.4 - 1.6][no audio] [https://drive.google.com/open?id=1WIsYlRKbakgdCNZ6BmQjNORnT7GFycd1]

1.4 Complete the tallyVote method, starting at Line 59

	1.4a Add a for loop to find the winner of the vote, Lines 61 - 65

for (uint8 i; i < candidates_.length; i++) {
 if (candidateTotals_[i] > candidateTotals_[currentWinner]) {
 currentWinner = i;
 }
}

	1.4b Set the winner, Line 70

winner_ = candidateIds_[currentWinner];

	1.4c Emit an event that the vote has completed, Line 75

emit VoteComplete(winner_);

1.5 Add other candidates to the vote, Line 32

candidates_.push("YOUR NAME");
candidateIds_[1] = "YOUR NAME";

1.6 Run the contract, deploying within remix and test the castVote method and tallyVote methods

	Confirm candidates

	Cast several votes and after each confirm the total for the candidate has increased

	Tally the vote before the duration has elapsed

	Tally the vote after the duration has and view the winner

	Attempt to cast votes after the duration has elapsed

2. Token Exercise [https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/exercises/Token_02.sol]

	View Final Solution Demo [https://drive.google.com/open?id=1cjCdlIaPVxwzxKry6tpSOm9Cz-qDepZO]

Video Tutorial [2.1-2.6][no audio] [https://drive.google.com/open?id=1yUxNOfeLR3Ifg7Eo23Vh0SkgYRfAKeG2]

2.1 Copy the exercise over to remix [https://remix.ethereum.org/#optimize=false&version=soljson-v0.4.24+commit.e67f0147.js].

2.2 Compile and deploy the contract. Confirm variables and methods are available.

2.3 Update the contract metadata to be your own! Line 8 & 9.

string public constant symbol = 'YOUR NAME';
string public constant name = 'YOUR NAME Token';

2.4 Specify the rate for the purchase of your token, line 14

uint public constant rate_ = 2; // rate of token / wei for purchase

2.5 Complete the buy method.

	May purchase only with > 0 ETH, line 46

require(msg.value > 0, 'Cannot buy with a value of <= 0, Token.buy()');

	Compute the amount of tokens to mint, line 49

uint256 tokenAmount = msg.value * rate_;

	Update the total supply and the user’s balance, line 52 & 53

totalSupply_ += tokenAmount; // NOTE overflow
balances_[msg.sender] += tokenAmount; // NOTE overflow

	Finally emit events to notify the outside world, line 56 & 57

emit TokensMinted(msg.sender, msg.value, totalSupply_);
emit Transfer(address(0), msg.sender, msg.value);

2.6 Compile, deploy and confirm you can purchase your token. Confirm balance updated in balances mapping.

Video Tutorial [2.7-2.10][no audio] [https://drive.google.com/open?id=1kAPTCbLndTMaOslYo0lx4bN3eE7-zQQs]

2.7 Complete the transfer method.

	Ensure from address has a sufficient balance, line 70

require(balances_[msg.sender] >= _value, 'Sender balance is insufficient, Token.transfer()');

	Update the from and to balances, line 73 & 74

balances_[msg.sender] -= _value; // NOTE underflow
balances_[_to] += _value; // NOTE overflow

	Finally emit an event of the transfer, line 77

emit Transfer(msg.sender, _to, _value);

2.8 Compile and deploy and confirm buy and transfer working.

2.9 Note error output if insufficient balance and other errors correct.

2.10 Usage

	Purchase of tokens

	Transfers

Important

But how can you get your hard earned ETH out of the contract that has been accumulating as tokens have been sold?!

2.11 Add a withdraw method, and claim the ETH sent to the contract! Line 102

	Solution below…

Important

Save this contract to disk if you wish to use it again! However a completed token will be made available should you wish.

Solutions

	Voting Exercise Solution [https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/solutions/Voting_02.sol]

	Token Exercise Solution [https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/solutions/Token_02.sol]

2.11 Token Withdraw method

	Confirm only the owner may withdraw, line 104

require(msg.sender == owner_, "only the owner may withdraw");

	Transfer the balance of the contract(this) to the wallet, line 107

_wallet.transfer(address(this).balance);

Project Submission

1.0 Github Account

If you have not already please create a github account. Please do so at github.com [https://github.com/].

2.0 Submit Your Project

Video Tutorial [https://drive.google.com/open?id=1QLbeS_qGqY1KqPygl822RJqDsAffkNKO]

Note

Replace USERNAME with your username below, the example below will use blockchainLG.

	Navigate to the BLG/Projects [https://github.com/Blockchain-Learning-Group/projects] repo.

	In the top right corner click on the fork icon. This should create your own copy of the repo.

	Clone this new copy onto your machine.

git clone https://github.com/USERNAME/projects.git

	Example output:

adam@adam:~/Desktop/blg$ git clone https://github.com/blockchainLG/projects.git
Cloning into 'projects'...
remote: Counting objects: 58, done.
remote: Compressing objects: 100% (48/48), done.
remote: Total 58 (delta 4), reused 52 (delta 2), pack-reused 0
Unpacking objects: 100% (58/58), done.
Checking connectivity... done.
adam@adam:~/Desktop/blg$

	Create a directory to submit your project and copy the contents of your project into the directory.

Note

This may be done with any file browser as well, below are linux commands to do so.

mkdir projects/submissions/USERNAME
cp -a wallet-template/* projects/submissions/USERNAME/

	Push your changes to your fork

cd projects
git add .
git commit -m "USERNAME submitting course project"
git push

	Navigate back to the BLG/Projects [https://github.com/Blockchain-Learning-Group/projects] repo.

	Select new pull request

	Select compare across forks

	Select your fork

	Enter a pull request message and create the PR!

Your project has been submitted and will be reviewed shortly!

Index

DeXchange Deployment

Stage 1: Restart Your Dev Environment and App

[image: https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/solutions/Exchange/03-stage-1.png]

Note

If your container is still running you may jump to step 2 otherwise begin instructions in a fresh terminal instance. Not within any existing window manager, ie. screen or tmux.

Download Video Tutorial [https://github.com/Blockchain-Learning-Group/dapp-fundamentals/blob/master/solutions/Exchange/03_video_tutorials/03-stage-1.mp4?raw=true]

Attention

	Docker Machine ONLY - if Docker shell exited

	
	Double-click the Docker QuickStart icon on your Desktop to restart docker machine.

	Execute everything following from within the Docker shell.

1. Start your container back up

docker start blg-env

	Example output:

adam@adam:~$ docker start blg-env
blg-env
adam@adam:~$

2. Attach into your container

Container will serve as your virtual environment.

docker exec -it blg-env bash

	Example output:

adam@adam:~$ docker exec -it blg-env bash
root@9c52f3787e28:/blg/wallet-template#

3. Start the app

CHOKIDAR_USEPOLLING=true yarn start

	Example output:

CHOKIDAR_USEPOLLING=true yarn start
yarn run v1.2.0
$ react-scripts start
Starting the development server...

Compiled successfully!

You can now view my-app in the browser.

 Local: http://localhost:3000/
 On Your Network: http://172.17.0.2:3000/

Note that the development build is not optimized.
To create a production build, use yarn build.

4. Create a new tab in your terminal window or a new terminal window for our Ethereum client

Note

While within the terminal window select File -> Open Terminal to create a new window.

To create a new tab from within a terminal window:

ctrl+shft+t

	Example output: Result is a new empty terminal, in the same directory you were when you initially entered your container. This will push you out of the container.

adam@adam:~/Desktop/blg$

5. Attach back into the container in the Etheruem client tab

docker exec -it blg-env bash

	Example output:

adam@adam:~/Desktop/blg$ docker exec -it blg-env bash
root@182d123ec039:/blg/wallet-template#

6. Load the app in chrome, localhost:3000 [http://localhost:3000/]

Note

Note there is no Ethereum client running yet!

END Stage 1: Restart Your Dev Environment and App

Stage 2: Connect to a “Real” Ethereum Client

Download Video Tutorial [https://github.com/Blockchain-Learning-Group/dapp-fundamentals/blob/master/solutions/Exchange/03_video_tutorials/03-stage-16.mp4?raw=true]

Note

If testrpc is still active in your container otherwise proceed to #3

1. Switch to your ethereum client tab

[...]
eth_getFilterChanges
eth_getFilterChanges

2. Stop the client, ctrl AND c

ctrl+c

Note

If the process does not terminate: (in a separate window inside the container)

	Find the process id of testrpc

ps aux | grep testrpc

	Example output:

ps aux | grep testrpc
root 847 2.1 0.5 948376 59096 pts/3 Sl+ 20:13 0:02 node /usr/local/bin/testrpc

	Kill the process

kill 847

	Example output:

kill 847
#

Result in the testrpc window:
.. code-block:: console

ctrl+b 1
[…]
Terminated
#

3. Connect to your real Ethereum client

	Switch into your ethereum client tab.

	Forward the container’s ports to the remote server. Password to be provided via a secure channel.

ssh -g -4 -NL 8545:127.0.0.1:8545 user@52.235.46.171

A secondary node exists as well: user@52.235.45.190

	Example output:

root@7e7d419200b4:/blg/wallet-template# ssh -g -4 -NL 8545:127.0.0.1:8545 user@52.235.46.203
The authenticity of host '52.242.37.231 (52.242.37.231)' can't be established.
ECDSA key fingerprint is c4:71:78:43:d8:78:f7:4b:24:36:ac:eb:09:a6:e7:f9.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '52.242.37.231' (ECDSA) to the list of known hosts.
user@52.235.46.203's password:

Note

There is no output if the above command is successful. It will simply hang as you are not actually ssh’ing into the machine, simply forwarding ports.

4. View accounts from the node now available in the ui.

[image: https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/solutions/Exchange/03-stage-16.png]
END Stage 2: Connect to a “Real” Ethereum Client

Stage 3: Deploy to the Kovan Public Testnet

Download Video Tutorial [https://github.com/Blockchain-Learning-Group/dapp-fundamentals/blob/master/solutions/Exchange/03_video_tutorials/03-stage-17.mp4?raw=true]

1. Create a new window or tab for our Truffle commands

Note

While within the terminal window select File -> Open Terminal to create a new window.

To create a new tab from within a terminal window:

ctrl+shft+t

	Example output: Result is a new empty terminal, in the same directory you were when you initially entered your container. This will push you out of the container.

adam@adam:~/Desktop/blg$

2. Attach back into the container in the Truffle tab

docker exec -it blg-env bash

	Example output:

adam@adam:~/Desktop/blg$ docker exec -it blg-env bash
root@182d123ec039:/blg/wallet-template#

3. Deploy the contracts.

Note

Note unlocked accounts have been provided on the remote BLG node. But the ether will go fast so mind your deployments and transactions!

cd src && truffle migrate

	Example output:

root@37709e3ee3e7:/blg/wallet-template# cd src && truffle migrate
Using network 'development'.

Running migration: 1_initial_migration.js
[...]
 Token: 0xf37825e75d9e597bfc55aa4e048a6ec6c0c6b5be
[...]
 Exchange: 0xadeadaf68eff9d6a633c30cddd6989b6e931f4ca
[...]
Saving artifacts...
root@37709e3ee3e7:/blg/wallet-template/src#

Attention

Common Error:

root@37709e3ee3e7:/blg/wallet-template/src# truffle migrate
Using network 'development'.

Running migration: 1_initial_migration.js
 Deploying Migrations...
 ... 0xfe605be6a2cfd5d2f22cdf7cdd548e8d7dd85e243bca9e7bbaeccb0ef1101144
Error encountered, bailing. Network state unknown. Review successful transactions manually.
Error: The contract code couldn't be stored, please check your gas amount.
 at Object.callback (/usr/local/lib/node_modules/truffle/build/cli.bundled.js:218485:46)
 at /usr/local/lib/node_modules/truffle/build/cli.bundled.js:34886:25
 at /usr/local/lib/node_modules/truffle/build/cli.bundled.js:220423:9
 at /usr/local/lib/node_modules/truffle/build/cli.bundled.js:72910:11
 at /usr/local/lib/node_modules/truffle/build/cli.bundled.js:204149:9
 at XMLHttpRequest.request.onreadystatechange (/usr/local/lib/node_modules/truffle/build/cli.bundled.js:205574:13)
 at XMLHttpRequestEventTarget.dispatchEvent (/usr/local/lib/node_modules/truffle/build/cli.bundled.js:73069:18)
 at XMLHttpRequest._setReadyState (/usr/local/lib/node_modules/truffle/build/cli.bundled.js:73359:12)
 at XMLHttpRequest._onHttpResponseEnd (/usr/local/lib/node_modules/truffle/build/cli.bundled.js:73514:12)
 at IncomingMessage.<anonymous> (/usr/local/lib/node_modules/truffle/build/cli.bundled.js:73474:24)

Solution: Simply run the migration again

4. View the contracts deployed to kovan @ https://kovan.etherscan.io/address/ TOKEN OR EXCHANGE ADDRESS

	Token Example: https://kovan.etherscan.io/address/0xf37825e75d9e597bfc55aa4e048a6ec6c0c6b5be

	Exchange Example: https://kovan.etherscan.io/address/0xadeadaf68eff9d6a633c30cddd6989b6e931f4ca

5. View the contract reference objects in the browser.

[image: https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/solutions/Exchange/03-stage-17.png]
[image: https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/solutions/Exchange/03-stage-17-02.png]
END Stage 3: Deploy to the Kovan Public Testnet

Stage 4: Convert to Metamask Web3 Provider

Download Video Tutorial [https://github.com/Blockchain-Learning-Group/dapp-fundamentals/blob/master/solutions/Exchange/03_video_tutorials/03-stage-18.mp4?raw=true]

1. Ensure Metamask is installed, unlocked and connected to the kovan testnet.

2. Add a conditional to use the Metamask web3 provider if present, wallet-template/src/App.js#L49 [https://github.com/Blockchain-Learning-Group/exchange-eod3/blob/0779b46516bc5c697c5fb986cad1080b8c8121af/src/App.js#L49]

3. Refresh the browser and connect to your Metamask account. View your Metamask account now available within the application.

[image: https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/solutions/Exchange/03-stage-18.png]
END Stage 4: Convert to Metamask Web3 Provider

Stage 5: Use the Exchange!

Download Video Tutorial [https://github.com/Blockchain-Learning-Group/dapp-fundamentals/blob/master/solutions/Exchange/03_video_tutorials/03-stage-19.mp4?raw=true]

1. Mint tokens to your Metamask account. Will need to be done from the parity account that deployed the contract as it is the owner.

2. Submit an order! Note the Metamask dialog now appears to allow you, the user, to approve the transaction and therefore also pay for its execution.

3. Create a new Metamask account.

4. Send ether to it from your initial Metamask account.

5. Execute the order from your new account and view the updated token balances.

Success, your exchange is complete!

END Stage 5: Use the Exchange!

Bonus: Extend Your Exchange

1. Connect to another participant’s exchange, updating the address to create the reference object at.

2. Sync a node of your own! Instructions can be found here [http://blg-dapp-fundamentals.readthedocs.io/en/latest/course-content/blockchain-fundamentals.html#sync-an-ethereum-node-of-your-own]

3. Pre-condition checks! amounts > 0, etc.

4. Integrate error logging pattern in place of requires

5. Add other ERC20 / ETH pairings

6. Enable ERC20 / ERC20 pairings

7. Automated order matching, partial fills, matched by ratio not user selected.

8. Write tests for the exchange

9. Update gas amounts sent with each transaction. Leverage web3’s gas estimation!

10. Clean up the allowance if the order submission transaction fails

11. Sort the orders in the order book table

Submit Your Project!

Instructions can be found here: here [http://blg-dapp-fundamentals.readthedocs.io/en/latest/course-content/project-submission.html]

Clean up

Download Video Tutorial [https://github.com/Blockchain-Learning-Group/dapp-fundamentals/blob/master/solutions/Wallet/02_video_tutorials/03-stage-cleanup.mp4?raw=true]
1. Detach from the container
—————————-

ctrl+d

2. Stop the container

docker stop blg-env

	Example output:

adam@adam:~/$ docker stop blg-env
blg-env
adam@adam:~/$

Bonus Exercises

Important

The below exercises will be completed within REMIX.
Navigate to: https://remix.ethereum.org [https://remix.ethereum.org/#optimize=true&version=soljson-v0.4.24+commit.e67f0147.js]

1. SimpleStorage TODO [https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/exercises/Voting_02.sol]

	TODO View Final Solution Demo [https://drive.google.com/open?id=1HUlqRB62Y57RXIbGmp4ckmHuc2cpHqkb]

Video Tutorial [https://drive.google.com/open?id=13DBLIclqpJ9iNtRWzSvJ8NGzBM-LTbdD]

1.1 Define the compiler verion

pragma solidity 0.4.24;

1.2 Create the SimpleStorage contract

contract SimpleStorage {}

1.3 Compile and deploy, view deloyed contract instance

1.4 Add a first storage variable, storedData

uint256 storedData;

1.5 Compile and deploy, view deloyed contract instance

Note

Is the storage variable, storedData, available in the interface?

1.6 Update the storage variable’s visibility to public

uint256 public storedData;

1.7 Compile and deploy, view deloyed contract instance

Note

Is the storage variable, storedData, available in the interface now?

Important

Note the changes made between 1.4 and 1.7 and the impact of the visibility modification.
- The difference between default(interal) visiblity and public.

1.8 Create the SimpleStorage contract’s first function to set the value of the storage variable

function set(uint256 x) {
 storedData = x;
}

1.9 Compile and deploy, test the set function

	Read storedData

	Call set to update the value of storedData, note default visibility

	Read storedData, did the value change successfully

	Expand the transactional data within the evm console and investigate

1.10 Change the visibility of storedData to private

uint256 private storedData;

Note

Storage variable is no longer accessible, let’s right a function to fix that!

1.11 Create a function to get the value of storedData

function get() returns (uint256) {
 return storedData;
}

1.12 Compile and deploy, test the get function

Note

Could you get the value of storedData?
What did the get function return?
Was gas consumed? Was a transaction sent? Or a call?

1.13 Update the get function’s mutability

function get() view returns (uint256) {
 return storedData;
}

1.14 Compile and deploy, test the set and get functions

	get the initial value, what was returned this time? a tx or a call?

	set the value

	view it has changed

	investigate evm console transactional details along the way

2. Payable functions and contract to contract communication

Solution: SimpleStorageAndFactory.sol

2.1 Add an acceptEther function

	::

	
	function acceptEther() public payable {

	storedData = this.balance;

}

2.2 Compile and run, test the acceptEther function

	Call the function and send value

	get the value of stored data, was it updated?

	note value has moved from the EOA to the contract

2.3 Add a second contract that will interact with SimpleStorage

contract TestContractValueTransfers {}

2.4 Add a storage variable, an instance of a simple storage contract

SimpleStorage simpleStorage = new SimpleStorage();

2.5 Add a function to withdraw the ether from this contract into the simple storage contract

function withdraw() {
 simpleStorage.transfer(this.balance);
}

2.6 try this method?

	won’t compile: Value transfer to a contract without a payable fallback function. simpleStorage.transfer(this.balance);

2.7 add a fallback to the simple storage contract

function () external payable {}

Compiles now?

2.8 Try the withdraw function now

	not so useful without a way to read the balances eh?

2.9 Add 2 functions to read the balance of the simple storage contract as well as the test contract

function getSimpleStorageBalance() returns(uint256) {
 return simpleStorage.balance;
}

function getMyBalance() returns(uint256) {
 return this.balance;
}

Important

Forgetting something? Don’t forget these functions need to be marked view to return the value.
Go ahead and modifier both functions with the view mutability modifer.

2.10 Add fallback to test in order to fund it

function () external payable {}

2.11 test the ability to withdraw into the simple storage contract

	read balances along the way

3. Units and globals

Solution: SimpleStorageTimeLock

	Add a delay to specify how long of a delay is required between updates to the storedData

uint256 delay = 5 seconds;

	Add a storage variable to track when was last set

uint256 public wasSetLast;

	Once the value was set update the wasSetLast variable

wasSetLast = block.timestamp;

	Try it out! Does the wasSetLast update correctly?

	Now permission the set function to only allow writes after the delay

require(block.timestamp > wasSetLast + delay, "Delay has not passed.");

Tic Tac Toe v1

SOLUTION: TicTacToe_01.sol

	create contract and initial storage vars

pragma solidity 0.4.24;

contract TicTacToe {

 address public player1_;
 address public player2_;

 /** The game board itself
 * 0, 1, 2
 * 3, 4, 5
 * 6, 7, 8
 */
 uint256[9] public gameBoard_;
}

	Create a function to allow a game to be started

function startGame(address _player1, address _player2) external {
 player1_ = _player1;
 player2_ = _player2;
}

3. Now players need to be able to take a turn, specifying where they want to place their x or 0
- create a function to allow this

/**
 * @notice Take your turn placing your x or o
 * @param _x X coordinate
 * @param _y Y coordinate
 */
function takeTurn(uint256 _x, uint256 _y) external {}

4. We need to calculate the correpsonding index in the array based on the x and y passed in
- explain how this is computed

uint256 boardLocation = _y*3 + _x;

	Determine the identifier to mark the board with

uint256 identifier;
msg.sender == player1_ ? identifier = 1 : identifier = 2;

	Mark the board, update the array

gameBoard_[boardLocation] = identifier;

	Give it a shot! Try starting a game and taking turns, watch as the game board’s indexes are filled.

	now take a look what problems do you notice?

STOP RECORDING

	did you have some time to play with the contract?

	Any big issues come up?

	what we noticed was:

Important

What problems currently exist with this?

	Anyone can take turns!

	A player can overwrite a spot that has already been taken

	A player may take many turns in a row, now alternating enforcement

Let’s tackle these problems first!

	Require that only player1 or player 2 may take turns

require(msg.sender == player1_ || msg.sender == player2_, "Not a valid player.");

	Add a pre condition check to confirm the spot on the board is not already taken

require(gameBoard_[boardLocation] == 0, "Spot taken!");

	Add a storage variable to track who just took a turn

	::

	address public lastPlayed_;

	Following a turn being taken update the storage variable

lastPlayed_ = msg.sender;

	Check that the same player is not trying to take another turn

	::

	require(msg.sender != lastPlayed_, “Not your turn.”);

Try taking turns now! More restricted / protected?

Important

Happy?

What else do we need to fix?

How about a conclusion to the game?

Let’s look into how we can compute a winner

	First define which combintations within the game board, which indexes, define a “win”

/**
 * Winning filters:
 * 0, 1, 2
 * 3, 4, 5
 * 6, 7, 8
 *
 * 3 in a row:
 * [0,1,2] || [3,4,5] || [6,7,8]
 *
 * 3 in a column:
 * [0,3,6] || [1,4,7] || [2,5,8]
 *
 * Diagonals:
 * [0,4,8] || [6,7,8]
 */

	Create a function to compute a winner and Implement these combintations as filters to filter the board with

function isWinner(uint256 identifier) private view returns(bool) {
 uint8[3][8] memory winningFilters = [
 [0,1,2],[3,4,5],[6,7,8], // rows
 [0,3,6],[1,4,7],[2,5,8], // columns
 [0,4,8],[6,7,8] // diagonals
];
}

	Create a for loop to iterate over each filter

for (uint8 i = 0; i < winningFilters.length; i++) {
 uint8[3] memory filter = winningFilters[i];
}

	Add a storage variable to define the winner

address public winner_;

	Compare each filter against the game board and see if the player has won with their latest turn

if (
 gameBoard_[filter[0]]==identifier &&
 gameBoard_[filter[1]]==identifier &&
 gameBoard_[filter[2]]==identifier
) {
 return true;
}

	After each turn is taken see if there is a winner, update storage with the winner

if (isWinner(identifier)) {
 winner_ = msg.sender;
}

Try it out!! see if the winner is set if 3 in a row is found

STOP RECORDING

Important

Are we done?

… still a few problems

	Turns can still continue to be taken, no notification that the game has ended

	What happens in the case of a draw?

	Add a storage variable to signify the game has ended

bool public gameOver_;

	If a winner was found update that the game has ended

gameOver_ = true;

	Add a storage variable to count how many turns have been taken, will use to define a draw

uint256 public turnsTaken_;

	After a turn is taken update the turns taken storage variable

turnsTaken_++;

	Add a conditional that if 9 turns have been taken the game has ended with no winner

else if (turnsTaken_ == 9) {
 gameOver_ = true;
}

	Add a last pre condition check that the game is still active

require(!gameOver_, "Sorry game has concluded.");

Try it out!!

	start game, account 1 and 2

	
	take turns back and forth, 0,1 0,2 0,3 => player to win

	
	view turns taken updating

	view no winner yet

	view game has not ended

	View that the winner has been set

	view that game has ended

	Try and take another turn => view output

OK how about a friendly wager!

	Add a storage variable to hold the placed wagers

mapping(address => uint256) public wagers_;

	Add a function to allow the players to place a wager

function placeWager() external payable {
 require(msg.sender == player1_ || msg.sender == player2_, "Not a valid player.");
 wagers_[msg.sender] = msg.value;
}

	Update the logic if a winner is found to transfer all the value to them

msg.sender.transfer(address(this).balance);

	Update the logic to refund the value if a draw

player1_.transfer(wagers_[player1_]);
player2_.transfer(wagers_[player2_]);

Go play! Earn some ETH.

Homework!

	What happens when a new game wants to be started in the same contract?

	How to allow this? When to allow this? Reset storage variables?

Intro Token

	Create empty contract

pragma solidity 0.4.24;

contract MyToken {}

	Add the contract metadata, identifying data

string public symbol = 'BLG';
string public name = 'Blockchain Learning Group Community Token';

pragma solidity 0.4.24;

	contract MyToken {

	string public symbol = ‘BLG’;
string public name = ‘Blockchain Learning Group Community Token’;

}

	Add the storage variables

uint256 public totalSupply_;
mapping (address => uint256) public balances_;

pragma solidity 0.4.24;

	contract MyToken {

	string public symbol = ‘BLG’;
string public name = ‘Blockchain Learning Group Community Token’;

uint256 public totalSupply_;
mapping (address => uint256) public balances_;

}

	Define the rate

// Rate of tokens to issue per unit of wei, 1 wei = 2 tokens
uint256 public rate = 2;

pragma solidity 0.4.24;

	contract MyToken {

	string public symbol = ‘BLG’;
string public name = ‘Blockchain Learning Group Community Token’;

uint256 public totalSupply_;
mapping (address => uint256) public balances_;

// Rate of tokens to issue per unit of wei, 1 wei = 2 tokens
uint256 public rate = 2;

}

	Add the events

event Transfer(address from, address to, uint value);
event TokensMinted(address to, uint256 value, uint256 totalSupply);

pragma solidity 0.4.24;

	contract MyToken {

	string public symbol = ‘BLG’;
string public name = ‘Blockchain Learning Group Community Token’;

uint256 public totalSupply_;
mapping (address => uint256) public balances_;

// Rate of tokens to issue per unit of wei, 1 wei = 2 tokens
uint256 public rate = 2;

event Transfer(address from, address to, uint value);
event TokensMinted(address to, uint256 value, uint256 totalSupply);

}

	Add a buy method

function buy() external payable {
 uint256 tokenAmount = msg.value * rate;

 totalSupply_ += tokenAmount;
 balances_[msg.sender] += tokenAmount;

 emit TokensMinted(msg.sender, msg.value, totalSupply_);
 emit Transfer(address(0), msg.sender, msg.value);
}

pragma solidity 0.4.24;

	contract MyToken {

	string public symbol = ‘BLG’;
string public name = ‘Blockchain Learning Group Community Token’;

uint256 public totalSupply_;
mapping (address => uint256) public balances_;

// Rate of tokens to issue per unit of wei, 1 wei = 2 tokens
uint256 public rate = 2;

event Transfer(address from, address to, uint value);
event TokensMinted(address to, uint256 value, uint256 totalSupply);

	function buy() external payable {

	uint256 tokenAmount = msg.value * rate;

totalSupply_ += tokenAmount;
balances_[msg.sender] += tokenAmount;

emit TokensMinted(msg.sender, msg.value, totalSupply_);
emit Transfer(address(0), msg.sender, msg.value);

}

}

	Add a getter to check the balance of the token contract

function balance() external view returns(uint256) {
 return address(this).balance;
}

buy some tokens and watch the balances mapping and eth balances, and monitor the balance of the contract

pragma solidity 0.4.24;

	contract MyToken {

	string public symbol = ‘BLG’;
string public name = ‘Blockchain Learning Group Community Token’;

uint256 public totalSupply_;
mapping (address => uint256) public balances_;

// Rate of tokens to issue per unit of wei, 1 wei = 2 tokens
uint256 public rate = 2;

event Transfer(address from, address to, uint value);
event TokensMinted(address to, uint256 value, uint256 totalSupply);

	function buy() external payable {

	uint256 tokenAmount = msg.value * rate;

totalSupply_ += tokenAmount;
balances_[msg.sender] += tokenAmount;

emit TokensMinted(msg.sender, msg.value, totalSupply_);
emit Transfer(address(0), msg.sender, msg.value);

}

	function balance() external view returns(uint256) {

	return address(this).balance;

}

}

	Add a transfer function

function transfer (address _to, uint256 _value) external {
 require(balances_[msg.sender] >= _value, 'Sender balance is insufficient');

 balances_[msg.sender] -= _value;
 balances_[_to] += _value;

 emit Transfer(msg.sender, _to, _value);
}

pragma solidity 0.4.24;

	contract MyToken {

	string public symbol = ‘BLG’;
string public name = ‘Blockchain Learning Group Community Token’;

uint256 public totalSupply_;
mapping (address => uint256) public balances_;

// Rate of tokens to issue per unit of wei, 1 wei = 2 tokens
uint256 public rate = 2;

event Transfer(address from, address to, uint value);
event TokensMinted(address to, uint256 value, uint256 totalSupply);

	function buy() external payable {

	uint256 tokenAmount = msg.value * rate;

totalSupply_ += tokenAmount;
balances_[msg.sender] += tokenAmount;

emit TokensMinted(msg.sender, msg.value, totalSupply_);
emit Transfer(address(0), msg.sender, msg.value);

}

	function balance() external view returns(uint256) {

	return address(this).balance;

}

	function transfer (address _to, uint256 _value) external {

	require(balances_[msg.sender] >= _value, ‘Sender balance is insufficient’);

balances_[msg.sender] -= _value;
balances_[_to] += _value;

emit Transfer(msg.sender, _to, _value);

}

}

Buy and transfer some tokens!

	add a withdraw function

function withdraw(address _wallet) external {
 _wallet.transfer(address(this).balance);
}

Important

anyone can withdraw the balance!!

	add a storage variable to define who the owner of the token is

address public owner_;

	add a constructor to set the sender of the contract creation transaction as the owner

constructor() public {
 owner_ = msg.sender;
}

	permission withdraw to just the owner!

require(msg.sender == owner_, "only the owner may withdraw");

purchase from some diff accounts then withdraw an watch balances

pragma solidity 0.4.24;

	contract mytoken {

	string public symbol = ‘blg’;
string public name = ‘blockchain learning group community token’;

uint256 public totalsupply_;
mapping (address => uint256) public balances_;

// rate of tokens to issue per unit of wei, 1 wei = 2 tokens
uint256 public rate = 2;

address public owner_;

event transfer(address from, address to, uint value);
event tokensminted(address to, uint256 value, uint256 totalsupply);

	constructor() public {

	owner_ = msg.sender;

}

	function buy() external payable {

	uint256 tokenamount = msg.value * rate;

totalsupply_ += tokenamount;
balances_[msg.sender] += tokenamount;

emit tokensminted(msg.sender, msg.value, totalsupply_);
emit transfer(address(0), msg.sender, msg.value);

}

	function balance() external view returns(uint256) {

	return address(this).balance;

}

	function transfer (address _to, uint256 _value) external {

	require(balances_[msg.sender] >= _value, ‘sender balance is insufficient’);

balances_[msg.sender] -= _value;
balances_[_to] += _value;

emit transfer(msg.sender, _to, _value);

}

	function withdraw(address _wallet) external {

	require(msg.sender == owner_, “only the owner may withdraw”);
_wallet.transfer(address(this).balance);

}

}

v3 - extended tic tac toe

SOLUTION: TicTacToe_02

tx origin vs msg.sender

SOLUTION: TxOriginVsMsgSender.sol

Bonus Exercises

1. Voting Exercise [https://raw.githubusercontent.com/Blockchain-Learning-Group/dapp-fundamentals/master/exercises/Voting_02.sol]

	View Final Solution Demo [https://drive.google.com/open?id=1HUlqRB62Y57RXIbGmp4ckmHuc2cpHqkb]

Video Tutorial[1.1 - 1.3][no audio] [https://drive.google.com/open?id=13DBLIclqpJ9iNtRWzSvJ8NGzBM-LTbdD]

1.1 Copy the exercise over to remix [https://remix.ethereum.org/#optimize=false&version=soljson-v0.4.24+commit.e67f0147.js].

1.2 Define the duration of the vote, Line 7

uint256 public constant VOTE_DURATION = 2 minutes;

Glossary and Useful Resources

	Merkle Trees

	Merkling in Ethereum [https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/]

	Patricia Tree [https://github.com/ethereum/wiki/wiki/Patricia-Tree]

VBOX notes

5. Once VirtualBox is running, click on the new button, this will open a dialog window

4. Enter name -> linux -> ubuntu 64

5. 2 GB ram, then all defaults

6. right click settings => storage => add optical disk => navigate to downloaded ISO

7. start VM normally

8. Select english and install ubuntu

9. click both checkboxes to install updates and third party software

10. check the box to erase disk and install ubuntu => click install now => note this is just the VM not your machine

11. Click continue

12. select timezone of your preference

13. DEfault keyboard layout should be fine, hit continue

14. Enter basic personal, does not matter! BUT don’t forget your password!! check the login automatically button and continue

	the install may take a few minutes

	Restart of the VM is required, select restart Now

	Once restarted hit ENTER to continue, note there was no bootable media to remove

Course Prerequisites

1.0 Course Resources

Note

Familiarity beforehand recommended.

	Docker [https://www.docker.com/]

	ReactJS [https://reactjs.org/]

	Solidity [https://solidity.readthedocs.io/en/develop/]

	Truffle Framework [http://truffleframework.com/]

	Web3JS [https://github.com/ethereum/wiki/wiki/JavaScript-API]

	Ganache-cli [https://github.com/trufflesuite/ganache-cli]

	Material UI [http://www.material-ui.com/]

	Remix [https://remix.ethereum.org/#optimize=false&version=soljson-v0.4.24+commit.e67f0147.js]

	Metamask [https://metamask.io/]

2.0 Machine Specs

Attention

Participants are required to bring their own laptops.

	4GB of memory and some disk space(4GB+) recommended.

	Operating System: Ubuntu 16.04+ preferred, Mac and Windows 7+ OK(Mac preferred).

3.0 Machine Setup

	VirtualBox setup instructions here [http://blg-dapp-fundamentals.readthedocs.io/en/latest/course-content/prerequisites/vbox-install.html]

3.1 Text Editor

	Install the Sublime text editor

	Download the editor here: https://www.sublimetext.com/3

	Complete the installer steps

	Install Sublime Package Control

	Open the editor

	ctrl+shift+p or cmd+shift+p (Mac)

	Select Install Package Control

	Install the Ethereum package

	ctrl+shift+p or cmd+shift+p (Mac)

	Select Package Control: Install Package

	Search for and select Ethereum

3.2 Browser

	Google Chrome

	Install the Google Chrome browser here. [https://support.google.com/chrome/answer/95346?co=GENIE.Platform%3DDesktop&hl=en-GB]

	Version > 55.0.0. Check in address bar: chrome://version/

OR

	Brave

	Install the browser here [https://brave.com/]

3.3 Metamask

	Install the chrome plugin, Metamask here [https://chrome.google.com/webstore/detail/metamask/nkbihfbeogaeaoehlefnkodbefgpgknn?hl=en]

	Once installed, share your address via the BLG slack channel.

	Metamask extension for Brave Browser may also be enabled within their default shield settings >> extensions

3.4 Development Dependencies

	Local Dockerized Environment

	Follow the instructions here [http://blg-dapp-fundamentals.readthedocs.io/en/latest/course-content/prerequisites/local-docker-env.html] to configure your environment

[Windows users ONLY]

	Git client

	Install git for windows here [https://git-for-windows.github.io/]

	And to enable usage within windows command prompt execute the following within a prompt: set PATH=%PATH%;"C:\Program Files\Git\cmd

	Confirm git is configured correctly simply run: git

[MAC users ONLY]

	Xcode

	You can find Xcode in the App Store: Xcode [https://itunes.apple.com/us/app/xcode/id497799835?mt=12]

Local Dockerized Development Environment

Note

	A docker image has been configured with all development dependencies.

	All development will be conducted within a docker container(virtual environment) booted from the provided image.

	Chrome will be installed on the local machine and will interact with the application running inside the container.

Setup Guide

1. Install Docker

1.1 Ubuntu Installation

Note

If running Ubuntu 17.10 please follow the instructions here: 17.10 QuickStart [https://gist.github.com/levsthings/0a49bfe20b25eeadd61ff0e204f50088]

Important

Ubuntu Installation Instructions [https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-16-04]

Ubuntu Quick Start

sudo apt-get remove docker docker-engine docker.io

sudo apt-get update

sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

sudo apt-get update

sudo apt-get install docker-ce=17.09.0~ce-0~ubuntu

Note

If you wish to manage Docker as a Non-root user ie. sudo not required at the beginning of each command

sudo groupadd docker
sudo usermod -aG docker $USER
newgrp docker

1.2 Mac Installation

Important

Mac Installation Instructions [https://www.docker.com/docker-mac]

Quick Start

	Download Docker from: https://store.docker.com/editions/community/docker-ce-desktop-mac

	Double-click Docker.dmg to start the install process.

	Double-click the application to run it

	Check to see if it works by running docker version, confirm you have the latest release installed.

1.3 Windows Installation

Attention

Be sure to follow the correct instructions for you exact OS version!
Windows 10 Home requires a different nstallation process versus Windows 10 Pro for example.
64-bit operating system running Windows 7+ required, if you do not meet this specification please contact BLG asap to provide an environment.

Important

	First confirm exactly which OS version you are running.

	
	Process to check OS for 7, 8 and 10 here [https://support.microsoft.com/en-ca/help/13443/windows-which-operating-system]

	Check which OS version you are running, ver

C:\Users\adamj>ver
Microsoft Windows [Version 10.0.15063]
C:\Users\adamj>

Please follow the OS specific instructions below but for refererence the complete docker for Windows install instructions can be found here: Complete Windows Installation Instructions [https://www.docker.com/docker-windows]

Important

Windows 7+ Home(8, 10)

	Install docker toolbox: DockerToolbox.exe [https://download.docker.com/win/stable/DockerToolbox.exe]

	Ensure virtualization is enabled on your machine, Process to check [https://docs.docker.com/toolbox/toolbox_install_windows/#step-1-check-your-version]

	If it is disabled, check with the manufacturer to define the exact process, example below.

	Process on HP pavilion: Solution [https://h30434.www3.hp.com/t5/Desktop-Hardware-and-Upgrade-Questions/How-to-Enable-Intel-Virtualization-Technology-vt-x-on-HP/td-p/3198063]

	Boot into bios: restart and rapidly tap esc

	Select BIOS setup

	Under system configuration

	Select virtualization

	Toggle to Enabled

	Hit F10 to save and exit

	If you have a previous version of VirtualBox installed, do not reinstall it with the Docker Toolbox installer. When prompted, uncheck it. If you have Virtual Box running, you must shut it down before running the installer.

Warning

Virtualization must be enabled to continue!

	Once downloaded Double click the downloaded .exe file

	Select next through all defaults and finally install

	Once installation completes…

	Forward the ports of the virtual machine to the host: (Further Reference) [https://stackoverflow.com/questions/36286305/how-do-i-forward-a-docker-machine-port-to-my-host-port-on-osx]

	Open virtualbox manager, icon on desktop

	Select the default vm, created for docker-machine

	Open Settings -> Network -> Advanced -> Port Forward

	Forward 3000 and 8545 from VM to host:

	Protocol

	Host IP

	Host Port

	Guest IP

	Guest Port

	TCP

	127.0.0.1

	3000

	
	3000

	TCP

	127.0.0.1

	8545

	
	8545

	Select ok

	Find the Docker QuickStart Terminal icon, also on your desktop

	Double click to run it

	May take a few minutes to complete

	Resulting with a docker enabled shell for your use. Note it is this shell that you are now required to use to interact with docker. All linux commands may be executed within as well and you are required to follow the Docker Machine commands in the subsequent documentation.

 ## .
 ## ## ## ==
 ## ## ## ## ## ===
 /"""""""""""""""""___/ ===
    ~~~ {~~ ~~~~ ~~~ ~~~~ ~~~ ~ /  ===- ~~~
        \______ o           __/
          \    \         __/
           \____\_______/

docker is configured to use the default machine with IP 192.168.99.100
For help getting started, check out the docs at https://docs.docker.com

Start interactive shell

adamj@DESKTOP-B2ADN05 MINGW64 ~
$








Important

Windows 10 Professional or Enterprise 64-bit with Hyper-V Available


	Download from: https://store.docker.com/editions/community/docker-ce-desktop-windows


	Follow the few install steps and you will be required to log out


	Upon login docker should start automatically


	Within a command prompt simply enter: docker version to confirm docker has been installed correctly.


	Follow the steps here [https://rominirani.com/docker-on-windows-mounting-host-directories-d96f3f056a2c] to share your C drive with docker.











2. Confirm installation successful by testing the dev container

docker run -it --rm --name=blg-env blockchainlg/dapp-dev-env bash






	Example output: [may take a few minutes to pull the image]




ajl@x1c:~$ docker run -it --rm --name=blg-env blockchainlg/dapp-dev-env bash
Using default tag: latest
[...]
27dbc59e6374: Pull complete
Digest: sha256:dd092aac455c2c3fccf017c26fe14c40a13a2bbdf69cf67d1bd0adf66a708ec4
Status: Downloaded newer image for blockchainlg/dapp-dev-env:latest
ajl@x1c:~/dev/blg/courses/docker/dapp-dev-env$ docker run -it --rm --name=blg-env blockchainlg/dapp-dev-env bash
root@fefc5cac6cdd:/blg/wallet-template#






Attention

If the following error is experienced:

WARNING: Error loading config file: /home/ajl/.docker/config.json - open /home/ajl/.docker/config.json: permission denied





Grant permission to the active user:

sudo chown $USER /home/$USER/.docker/config.json








	You may detach from the container, removing it, via ctrl+d




You are done!







          

      

      

    

  _static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Blockchain Learning Group’s DApp Fundamentals Course!
        


        		
          Course Prerequisites
          
            		
              1.0 Course Resources
            


            		
              2.0 Machine Specs
            


            		
              3.0 Virtual Machine Setup
              
                		
                  1. Please download the virtual machine(vm) by clicking here
                


                		
                  2. Install VirtualBox-5.2 for your respective operating system, select the correct package for Mac, Windows and Linux distributins below
                


                		
                  3. Once downloaded double-click on the package to open it and follow the simple steps to complete the installation
                


                		
                  4. Once installed open VirtualBox
                


                		
                  5.  Import the downloaded vm
                


                		
                  6. Start the vm!
                


                		
                  7. Finally you will have a brand new Ubuntu 16.04 virtual machine up and running with all the required dependecies
                


                		
                  8. Stop the vm
                


              


            


          


        


        		
          Blockchain Fundamentals
          
            		
              1. ethstats.net
            


            		
              2. etherscan.io
            


            		
              3. ethernodes.org
            


            		
              4. Hash Function
            


            		
              5. Mining Script
            


            		
              6. Bitcoin 51% Attack Cost
            


            		
              7. Remix
            


            		
              8. DappDeveloper.sol
            


            		
              9. Exceed Block Gas Limit
            


            		
              10. Voting Exercise
            


            		
              11. Token Exercise
            


            		
              Bonus
              
                		
                  1. Deploy your token to a public Test Net(Kovan, Rinkeby, Ropsten)!
                


                		
                  2. Sync an Ethereum node of your own
                


              


            


          


        


        		
          Introduction to DApp Development
          
            		
              Stage 1: Dev Enviroment Setup and Application Bootstrap
              
                		
                  1. Make a blg directory on your desktop
                


                		
                  2. Clone the wallet template
                


                		
                  3. Run your docker container
                


                		
                  4. Attach into the container
                


                		
                  5. Install dependencies
                


                		
                  6. Start the app
                


              


            


            		
              Stage 2: Testing Your Token
              
                		
                  1. Create a new tab in your terminal window or a new terminal window for our Ethereum node
                


                		
                  2. Attach back into the container in the Etheruem node tab
                


                		
                  3. Start up your Ethereum node, ganache-cli
                


                		
                  4. Create a new window or tab for our Truffle commands
                


                		
                  5. Attach back into the container in the Truffle tab
                


                		
                  6. Create the Test Case
                


                		
                  7. Execute the Test Case
                


              


            


            		
              Stage 3: Token Deployment
              
                		
                  1. Write the Deployment Script
                


                		
                  2. Deploy your Token
                


              


            


            		
              Stage 4: Token Interface
              
                		
                  1. Import the web3 library, src/app.js #line 5
                


                		
                  2. Import the token build artifacts into the application, app.js#line 14
                


                		
                  3. Create a web3 connection to the local Ethereum node(ganache-cli), app.js#line 26
                


                		
                  4. Check if the connection was successful, app.js#line 28-30
                


                		
                  5. Detect the current network id that is connected, app.js#line 29-31
                


                		
                  6. Extract the recently deploy token address from the build artifacts, app.js#line 30-33
                


                		
                  7. Create a client side reference to the contract and save it in state, app.js#line 33-35
                


                		
                  8. Refresh your chrome browser and open up the developer console
                


              


            


            		
              Stage 5: Load Available On-chain Accounts
              
                		
                  1. Get the available accounts from the web3 connection, this is to wrap the existing token interface code, line 29 & 39
                


                		
                  2. Set the default account to use, line 30
                


                		
                  3. Load the available accounts into the user interface
                


                		
                  4. Set the default account
                


              


            


            		
              Stage 6: Token Interaction - GET
              
                		
                  1. Load the token metadata from the contract
                


              


            


            		
              Stage 7: Load Account Balances
              
                		
                  1. Load the default account’s ETH and Token balances, completing the loadAccountBalances method
                


                		
                  2. View the default account balances and token information in your browser!
                


              


            


            		
              Stage 8: Purchasing Tokens
              
                		
                  1. Add token amount to the state, line 21.
                


                		
                  2. Complete the method to buy tokens, sending a transaction to the token contract, line 99-104.
                


                		
                  3. In the GUI buy tokens with several available accounts.
                


                		
                  4. Refresh the browser or select a different account and come back, and view the account’s balance of shiny new tokens!
                


              


            


            		
              Stage 9: Events
              
                		
                  1. Add an event to listen for when tokens are transferred and reload the account’s balances, line 94-99
                


                		
                  2. Load the contract events, line 66
                


                		
                  3. Buy tokens and view the log confirmation in the developer console and token and ETH balance updated dynamically!
                


              


            


            		
              Stage 10: Transfer Tokens
            


            		
              Bonus: Extend Your Wallet
              
                		
                  1. Metamask Integration
                


                		
                  2. Sync an Ethereum node of your own
                


                		
                  3. Interact with your token that was deployed to Kovan
                


                		
                  4. Interact with another participant’s token on Kovan
                


                		
                  5. Enable the wallet to support multiple ERC20 tokens
                


              


            


            		
              Clean up
              
                		
                  1. Detach from the container
                


                		
                  2. Stop the container
                


              


            


            		
              BONUS
            


            		
              Solutions
              
                		
                  Stage 10: Transfer Tokens
                


                		
                  Complete Wallet Solution
                


              


            


          


        


        		
          DeXchange Project
          
            		
              Stage 1: Restart Your Dev Environment and App
              
                		
                  1. Start your container back up
                


                		
                  2. Attach into your container
                


                		
                  3. Start the app
                


                		
                  4. Create a new tab in your terminal window or a new terminal window for our Ethereum client
                


                		
                  5. Attach back into the container and start Etheruem node
                


                		
                  6. Create a new window or tab for our Truffle commands
                


                		
                  7. Deploy your Token
                


                		
                  10. Load the app in chrome, localhost:3000
                


              


            


            		
              Stage 2: Create the Exchange Contract
              
                		
                  1. Create a new file `line
                


                		
                  2. Copy Exchange Template into the new file, wallet-template/src/contracts/Exchange.sol
                


                		
                  3. Review the contents of the provided template.
                


              


            


            		
              Stage 3: Write the submitOrder Method
              
                		
                  1. Ensure the exchange has been given a sufficient token allowance, line 31
                


                		
                  2. Compute a unique id for the order, line 34
                


                		
                  3. Confirm this order does not already exist, line 35
                


                		
                  4. Add the order to the order book, line 38-44
                


                		
                  5. Emit the order submitted event, line 47
                


              


            


            		
              Stage 4: Test the submitOrder Method
              
                		
                  1. Create a new file wallet-template/src/test/test_submit_executeOrder.js
                


                		
                  2. Copy the test template into wallet-template/src/test/test_submit_executeOrder.js
                


                		
                  3. Define the accounts to be used, maker and taker, line 12-13
                


                		
                  4. Deploy a new exchange and token in the test case, line 19-20
                


                		
                  5. Define the order parameters, line 25-29
                


                		
                  6. Setup the transaction by minting tokens to the maker and giving allowance to the exchange, line 34-35
                


                		
                  7. Send the transaction submitting the order, line 40-44
                


                		
                  8. Confirm the correct event emitted, line 49-50
                


                		
                  9. Confirm the order stored on-chain is correct, line 55-61
                


                		
                  10. Execute the test and confirm it is passing!
                


              


            


            		
              Stage 5: Write the executeOrder method
            


            		
              Stage 6: Test the executeOrder method
            


            		
              Stage 7: Deploy the Exchange
              
                		
                  1. Add the exchange to the deployment script(src/migrations/2_deploy_contracts), line
                


                		
                  2. Deploy the exchange(a new token).
                


              


            


            		
              Stage 8: Add Basic Routing to the DApp
              
                		
                  1. Add basic routing to render navigate  between the exchange and wallet components
                


                		
                  2. Create the exchange component and the routes
                


              


            


            		
              Stage 9: Create the Reference Exchange Object
            


            		
              Stage 10: Create the UI Component to Submit an Order
              
                		
                  1. Add the components to load the active accounts, line 184-191
                


                		
                  2. Add the form to submit an order, line 192-207
                


              


            


            		
              Stage 11: Create the Functionality to Submit an Order
              
                		
                  1. Add the bid and ask amounts to the state, line 23-24
                


                		
                  2. Write the method to submit an order, line 142-162
                


                		
                  3. Buy tokens to ensure the account has a sufficient token balance.
                


                		
                  4. Submit an order and view the transaction hashes(approve and submitOrder) in the browser developer console.
                


              


            


            		
              Stage 12: Listen for Submitted Order Events
              
                		
                  1. Create an event listener for the order submitted event, line 113-117
                


                		
                  2. Submit an order and view the caught event.
                


              


            


            		
              Stage 13: Create the Order Book Table
              
                		
                  1. Import Material UI table components, line 14
                


                		
                  2. Add the order book to the state, line 31
                


                		
                  3. Add the order book component, line 240-257
                


                		
                  4. View new order book table in the ui.
                


              


            


            		
              Stage 14: Add an Order to the Order Book When Submitted
              
                		
                  1. Create an addOrder method, line 172-194
                


                		
                  2. Add the order to the order book when the order submitted event is fired, line 119
                


                		
                  3. Submit an order and view it added to the order book.
                


              


            


            		
              Stage 15: Select and execute an Order
            


            		
              Stage 16: Listen for executed order events
              
                		
                  1. Add the method to remove the order from the order book table, line 218-230
                


                		
                  2. Add an event to listen for executed orders, line 123-127
                


                		
                  3. Execute an order and see that it has been removed from the table.
                


              


            


            		
              Stage 17: Load the Order Book
              
                		
                  1. Add a method to load the order book, line 238-253
                


                		
                  2. Load the order book when the page renders, line 81
                


                		
                  3. View the loaded orders in the order book table.
                


              


            


            		
              Bonus: Extend Your Exchange
            


            		
              Clean up
              
                		
                  1. Detach from the container
                


                		
                  2. Stop the container
                


              


            


            		
              Solutions
              
                		
                  State 5: Write the executeOrder method
                


                		
                  Stage 6: Test the executeOrder method
                


                		
                  Stage 9: Create the Reference Exchange Object
                


                		
                  Stage 15: Select and execute an Order
                


              


            


          


        


        		
          Solidity Exercises
          
            		
              1. Voting Exercise
              
                		
                  1.1 Copy the exercise over to remix.
                


                		
                  1.2 Define the duration of the vote, Line 7
                


                		
                  1.3 Complete the castVote method, beginning on Line 36
                


                		
                  1.4 Complete the tallyVote method, starting at Line 59
                


                		
                  1.5 Add other candidates to the vote, Line 32
                


              


            


            		
              2. Token Exercise
              
                		
                  2.1 Copy the exercise over to remix.
                


                		
                  2.2 Compile and deploy the contract. Confirm variables and methods are available.
                


                		
                  2.3 Update the contract metadata to be your own! Line 8 & 9.
                


                		
                  2.4 Specify the rate for the purchase of your token, line 14
                


                		
                  2.5 Complete the buy method.
                


                		
                  2.6 Compile, deploy and confirm you can purchase your token. Confirm balance updated in balances mapping.
                


                		
                  2.7 Complete the transfer method.
                


                		
                  2.8 Compile and deploy and confirm buy and transfer working.
                


                		
                  2.9 Note error output if insufficient balance and other errors correct.
                


                		
                  2.10 Usage
                


                		
                  2.11 Add a withdraw method, and claim the ETH sent to the contract! Line 102
                


              


            


            		
              Solutions
            


          


        


        		
          Project Submission
          
            		
              1.0 Github Account
            


            		
              2.0 Submit Your Project
            


          


        


      


    
  

_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





